5 resultados para Electric insulators and insulation
em Helda - Digital Repository of University of Helsinki
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
This three-phase design research describes the modelling processes for DC-circuit phenomena. The first phase presents an analysis of the development of the DC-circuit historical models in the context of constructing Volta s pile at the turn of the 18th century. The second phase involves the designing of a teaching experiment for comprehensive school third graders. Among other considerations, the design work utilises the results of the first phase and research literature of pupils mental models for DC-circuit phenomena. The third phase of the research was concerned with the realisation of the planned teaching experiment. The aim of this phase was to study the development of the external representations of DC-circuit phenomena in a small group of third graders. The aim of the study has been to search for new ways to guide pupils to learn DC-circuit phenomena while emphasing understanding at the qualitative level. Thus, electricity, which has been perceived as a difficult and abstract subject, could be learnt more comprehensively. Especially, the research of younger pupils learning of electricity concepts has not been of great interest at the international level, although DC-circuit phenomena are also taught in the lower classes of comprehensive schools. The results of this study are important, because there has tended to be more teaching of natural sciences in the lower classes of comprehensive schools, and attempts are being made to develop this trend in Finland. In the theoretical part of the research an Experimental-centred representation approach, which emphasises the role of experimentalism in the development of pupil s representations, is created. According to this approach learning at the qualitative level consists of empirical operations like experimenting, observations, perception, and prequantification of nature phenomena, and modelling operations like explaining and reasoning. Besides planning teaching, the new approach can be used as an analysis tool in describing both historical modelling and the development of pupils representations. In the first phase of the study, the research question was: How did the historical models of DC-circuit phenomena develop in Volta s time? The analysis uncovered three qualitative historical models associated with the historical concept formation process. The models include conceptions of the electric circuit as a scene in the DC-circuit phenomena, the comparative electric-current phenomenon as a cause of different observable effect phenomena, and the strength of the battery as a cause of the electric-current phenomenon. These models describe the concept formation process and its phases in Volta s time. The models are portrayed in the analysis using fragments of the models, where observation-based fragments and theoretical fragements are distinguished from each other. The results emphasise the significance of the qualitative concept formation and the meaning of language in the historical modelling of DC-circuit phenomena. For this reason these viewpoints are stressed in planning the teaching experiment in the second phase of the research. In addition, the design process utilised the experimentation behind the historical models of DC-circuit phenomena In the third phase of the study the research question is as follows: How will the small group s external representations of DC-circuit phenomena develop during the teaching experiment? The main question is divided into the following two sub questions: What kind of talk exists in the small group s learning? What kinds of external representations for DC-circuit phenomena exist in the small group discourse during the teaching experiment? The analysis revealed that the teaching experiment of the small group succeeded in its aim to activate talk in the small group. The designed connection cards proved especially successful in activating talk. The connection cards are cards that represent the components of the electric circuit. In the teaching experiment the pupils constructed different connections with the connection cards and discussed, what kinds of DC-circuit phenomena would take place in the corresponding real connections. The talk of the small group was analysed by comparing two situations, firstly, when the small group discussed using connections made with the connection cards and secondly with the same connections using real components. According to the results the talk of the small group included more higher-order thinking when using the connection cards than with similar real components. In order to answer the second sub question concerning the small group s external representations that appeared in the talk during the teaching experiment; student talk was visualised by the fragment maps which incorporate the electric circuit, the electric current and the source voltage. The fragment maps represent the gradual development of the external representations of DC-circuit phenomena in the small group during the teaching experiment. The results of the study challenge the results of previous research into the abstractness and difficulty of electricity concepts. According to this research, the external representations of DC-circuit phenomena clearly developed in the small group of third graders. Furthermore, the fragment maps uncover that although the theoretical explanations of DC-circuit phenomena, which have been obtained as results of typical mental model studies, remain undeveloped, learning at the qualitative level of understanding does take place.
Resumo:
This thesis deals with theoretical modeling of the electrodynamics of auroral ionospheres. In the five research articles forming the main part of the thesis we have concentrated on two main themes: Development of new data-analysis techniques and study of inductive phenomena in the ionospheric electrodynamics. The introductory part of the thesis provides a background for these new results and places them in the wider context of ionospheric research. In this thesis we have developed a new tool (called 1D SECS) for analysing ground based magnetic measurements from a 1-dimensional magnetometer chain (usually aligned in the North-South direction) and a new method for obtaining ionospheric electric field from combined ground based magnetic measurements and estimated ionospheric electric conductance. Both these methods are based on earlier work, but contain important new features: 1D SECS respects the spherical geometry of large scale ionospheric electrojet systems and due to an innovative way of implementing boundary conditions the new method for obtaining electric fields can be applied also at local scale studies. These new calculation methods have been tested using both simulated and real data. The tests indicate that the new methods are more reliable than the previous techniques. Inductive phenomena are intimately related to temporal changes in electric currents. As the large scale ionospheric current systems change relatively slowly, in time scales of several minutes or hours, inductive effects are usually assumed to be negligible. However, during the past ten years, it has been realised that induction can play an important part in some ionospheric phenomena. In this thesis we have studied the role of inductive electric fields and currents in ionospheric electrodynamics. We have formulated the induction problem so that only ionospheric electric parameters are used in the calculations. This is in contrast to previous studies, which require knowledge of the magnetospheric-ionosphere coupling. We have applied our technique to several realistic models of typical auroral phenomena. The results indicate that inductive electric fields and currents are locally important during the most dynamical phenomena (like the westward travelling surge, WTS). In these situations induction may locally contribute up to 20-30% of the total ionospheric electric field and currents. Inductive phenomena do also change the field-aligned currents flowing between the ionosphere and magnetosphere, thus modifying the coupling between the two regions.
Resumo:
Flax and hemp have traditionally been used mainly for textiles, but recently interest has also been focused on non-textile applications. Microbial quality throughout the whole processing chain of bast fibres has not previously been studied. This study concentrates on the microbial quality and possible microbial risks in the production chain of hemp and flax fibres and fibrous thermal insulations. In order to be able to utilize hemp and flax fibres, the bast fibres must be separated from the rest of the plant. Non-cellulosic components can be removed with various pretreatment processes, which are associated with a certain risk of microbial contamination. In this study enzymatic retting and steam explosion (STEX) were examined as pretreatment processes. On the basis of the results obtained in this study, the microbial contents on stalks of both plants studied increased at the end of the growing season and during the winter. However, by processing and mechanical separation it is possible to produce fibres containing less moulds and bacteria than the whole stem. Enzymatic treatment encouraged the growth of moulds in fibres. Steam explosion reduced the amount of moulds in fibres. Dry thermal treatment used in this study did not markedly reduce the amount of microbes. In this project an emission measurement chamber was developed which was suitable for measurements of emissions from both mat type and loose fill type insulations, and capable of interdisciplinary sampling. In this study, the highest amounts of fungal emissions were in the range of 10^3 10^5 cfu/m^3 from the flax and hemp insulations at 90% RH of air. The fungal emissions from stone wool, glass wool and recycled paper insulations were below 10^2 cfu/m^3 even at 90% RH. Equally low values were obtained from bast fibrous materials in lower humidities (at 30% and 80% RH of air). After drying of moulded insulations at 30% RH, the amounts of emitted moulds were in all cases higher compared to the emissions at 90% RH before drying. The most common fungi in bast fibres were Penicillium and Rhizopus. The widest variety of different fungi was in the untreated hemp and linseed fibres and in the commercial loose-fill flax insulation. Penicillium, Rhizopus and Paecilomyces were the most tolerant to steam explosion. According to the literature, the most common fungi in building materials and indoor air are Penicillium, Aspergillus and Cladosporium, which were all found in some of the bast fibre materials in this study. As organic materials, hemp and flax fibres contain high levels of nutrients for microbial growth. The amount of microbes can be controlled and somewhat decreased by the processing methods presented.