3 resultados para Efficiency models
em Helda - Digital Repository of University of Helsinki
Resumo:
Various reasons, such as ethical issues in maintaining blood resources, growing costs, and strict requirements for safe blood, have increased the pressure for efficient use of resources in blood banking. The competence of blood establishments can be characterized by their ability to predict the volume of blood collection to be able to provide cellular blood components in a timely manner as dictated by hospital demand. The stochastically varying clinical need for platelets (PLTs) sets a specific challenge for balancing supply with requests. Labour has been proven a primary cost-driver and should be managed efficiently. International comparisons of blood banking could recognize inefficiencies and allow reallocation of resources. Seventeen blood centres from 10 countries in continental Europe, Great Britain, and Scandinavia participated in this study. The centres were national institutes (5), parts of the local Red Cross organisation (5), or integrated into university hospitals (7). This study focused on the departments of blood component preparation of the centres. The data were obtained retrospectively by computerized questionnaires completed via Internet for the years 2000-2002. The data were used in four original articles (numbered I through IV) that form the basis of this thesis. Non-parametric data envelopment analysis (DEA, II-IV) was applied to evaluate and compare the relative efficiency of blood component preparation. Several models were created using different input and output combinations. The focus of comparisons was on the technical efficiency (II-III) and the labour efficiency (I, IV). An empirical cost model was tested to evaluate the cost efficiency (IV). Purchasing power parities (PPP, IV) were used to adjust the costs of the working hours and to make the costs comparable among countries. The total annual number of whole blood (WB) collections varied from 8,880 to 290,352 in the centres (I). Significant variation was also observed in the annual volume of produced red blood cells (RBCs) and PLTs. The annual number of PLTs produced by any method varied from 2,788 to 104,622 units. In 2002, 73% of all PLTs were produced by the buffy coat (BC) method, 23% by aphaeresis and 4% by the platelet-rich plasma (PRP) method. The annual discard rate of PLTs varied from 3.9% to 31%. The mean discard rate (13%) remained in the same range throughout the study period and demonstrated similar levels and variation in 2003-2004 according to a specific follow-up question (14%, range 3.8%-24%). The annual PLT discard rates were, to some extent, associated with production volumes. The mean RBC discard rate was 4.5% (range 0.2%-7.7%). Technical efficiency showed marked variation (median 60%, range 41%-100%) among the centres (II). Compared to the efficient departments, the inefficient departments used excess labour resources (and probably) production equipment to produce RBCs and PLTs. Technical efficiency tended to be higher when the (theoretical) proportion of lost WB collections (total RBC+PLT loss) from all collections was low (III). The labour efficiency varied remarkably, from 25% to 100% (median 47%) when working hours were the only input (IV). Using the estimated total costs as the input (cost efficiency) revealed an even greater variation (13%-100%) and overall lower efficiency level compared to labour only as the input. In cost efficiency only, the savings potential (observed inefficiency) was more than 50% in 10 departments, whereas labour and cost savings potentials were both more than 50% in six departments. The association between department size and efficiency (scale efficiency) could not be verified statistically in the small sample. In conclusion, international evaluation of the technical efficiency in component preparation departments revealed remarkable variation. A suboptimal combination of manpower and production output levels was the major cause of inefficiency, and the efficiency did not directly relate to production volume. Evaluation of the reasons for discarding components may offer a novel approach to study efficiency. DEA was proven applicable in analyses including various factors as inputs and outputs. This study suggests that analytical models can be developed to serve as indicators of technical efficiency and promote improvements in the management of limited resources. The work also demonstrates the importance of integrating efficiency analysis into international comparisons of blood banking.
Resumo:
This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.
Resumo:
The objectives of this study were to make a detailed and systematic empirical analysis of microfinance borrowers and non-borrowers in Bangladesh and also examine how efficiency measures are influenced by the access to agricultural microfinance. In the empirical analysis, this study used both parametric and non-parametric frontier approaches to investigate differences in efficiency estimates between microfinance borrowers and non-borrowers. This thesis, based on five articles, applied data obtained from a survey of 360 farm households from north-central and north-western regions in Bangladesh. The methods used in this investigation involve stochastic frontier (SFA) and data envelopment analysis (DEA) in addition to sample selectivity and limited dependent variable models. In article I, technical efficiency (TE) estimation and identification of its determinants were performed by applying an extended Cobb-Douglas stochastic frontier production function. The results show that farm households had a mean TE of 83% with lower TE scores for the non-borrowers of agricultural microfinance. Addressing institutional policies regarding the consolidation of individual plots into farm units, ensuring access to microfinance, extension education for the farmers with longer farming experience are suggested to improve the TE of the farmers. In article II, the objective was to assess the effects of access to microfinance on household production and cost efficiency (CE) and to determine the efficiency differences between the microfinance participating and non-participating farms. In addition, a non-discretionary DEA model was applied to capture directly the influence of microfinance on farm households production and CE. The results suggested that under both pooled DEA models and non-discretionary DEA models, farmers with access to microfinance were significantly more efficient than their non-borrowing counterparts. Results also revealed that land fragmentation, family size, household wealth, on farm-training and off farm income share are the main determinants of inefficiency after effectively correcting for sample selection bias. In article III, the TE of traditional variety (TV) and high-yielding-variety (HYV) rice producers were estimated in addition to investigating the determinants of adoption rate of HYV rice. Furthermore, the role of TE as a potential determinant to explain the differences of adoption rate of HYV rice among the farmers was assessed. The results indicated that in spite of its much higher yield potential, HYV rice production was associated with lower TE and had a greater variability in yield. It was also found that TE had a significant positive influence on the adoption rates of HYV rice. In article IV, we estimated profit efficiency (PE) and profit-loss between microfinance borrowers and non-borrowers by a sample selection framework, which provided a general framework for testing and taking into account the sample selection in the stochastic (profit) frontier function analysis. After effectively correcting for selectivity bias, the mean PE of the microfinance borrowers and non-borrowers were estimated at 68% and 52% respectively. This suggested that a considerable share of profits were lost due to profit inefficiencies in rice production. The results also demonstrated that access to microfinance contributes significantly to increasing PE and reducing profit-loss per hectare land. In article V, the effects of credit constraints on TE, allocative efficiency (AE) and CE were assessed while adequately controlling for sample selection bias. The confidence intervals were determined by the bootstrap method for both samples. The results indicated that differences in average efficiency scores of credit constrained and unconstrained farms were not statistically significant although the average efficiencies tended to be higher in the group of unconstrained farms. After effectively correcting for selectivity bias, household experience, number of dependents, off-farm income, farm size, access to on farm training and yearly savings were found to be the main determinants of inefficiencies. In general, the results of the study revealed the existence substantial technical, allocative, economic inefficiencies and also considerable profit inefficiencies. The results of the study suggested the need to streamline agricultural microfinance by the microfinance institutions (MFIs), donor agencies and government at all tiers. Moreover, formulating policies that ensure greater access to agricultural microfinance to the smallholder farmers on a sustainable basis in the study areas to enhance productivity and efficiency has been recommended. Key Words: Technical, allocative, economic efficiency, DEA, Non-discretionary DEA, selection bias, bootstrapping, microfinance, Bangladesh.