3 resultados para ENTEROLACTONE
em Helda - Digital Repository of University of Helsinki
Resumo:
Several studies link the consumption of whole-grain products to a lowered risk of chronic diseases, such as certain types of cancer, type II diabetes, and cardiovascular diseases. However, the final conclusions of the exact protective mechanisms remain unclear, partly due to a lack of a suitable biomarker for the whole-grain cereals intake. Alkylresorcinols (AR) are phenolic lipids abundant in the outer parts of wheat and rye grains usually with homologues of C15:0- C25:0 alkyl chains, and are suggested to function as whole-grain biomarkers. Mammalian lignan enterolactone has also previously been studied as a potential whole-grain biomarker. In the present work a quantified gas chromatography-mass spectrometry method for the analysis of AR in plasma, erythrocytes, and lipoproteins was developed. The method was used to determine human and pig plasma AR concentrations after the intake of whole-grain wheat and rye products compared to low-fibre wheat bread diets to assess the usability of AR as biomarkers of whole-grain intake. AR plasma concentrations were compared to serum ENL concentrations. AR absorption and elimination kinetics were investigated in a pig model. AR occurrence in human erythrocyte membranes and plasma lipoproteins were determined, and the distribution of AR in blood was evaluated. Plasma AR seem to be absorbed via the lymphatic system from the small intestine, like many other lipophilic compounds. Their apparent elimination half-life is relatively short and is similar to that of tocopherols, which have a similar chemical structure. Plasma AR concentrations increased significantly after a one- to eight-week intake of whole-grain wheat and further on with whole-grain rye bread. The concentrations were also higher after habitual Finnish diet compared to diet with low-fibre bread. Inter-individual variation after a one-week intake of the same amount of bread was high, but the mean plasma AR concentrations increased with increasing AR intake. AR are incorporated into erythrocyte membranes and plasma lipoproteins, and VLDL and HDL were the main AR carriers in human plasma. Based on these studies, plasma AR could function as specific biomarkers of dietary whole-grain products. AR are exclusively found in whole-grains and are more suitable as specific biomarkers of whole-grain intake than previously investigated mammalian lignan enterolactone, that is formed from several plants other than cereals in the diet. Plasma AR C17:0/C21:0 -ratio could distinguish whether whole-grain products in the diet are mainly wheat or rye. AR could be used in epidemiological studies to determine whole-grain intake and to better assess the role of whole-grains in disease prevention.