2 resultados para E-governement portals
em Helda - Digital Repository of University of Helsinki
Resumo:
DEVELOPING A TEXTILE ONTOLOGY FOR THE SEMANTIC WEB AND CONNECTING IT TO MUSEUM CATALOGING DATA The goal of the Semantic Web is to share concept-based information in a versatile way on the Internet. This is achievable using formal data structures called ontologies. The goal of this re-search is to increase the usability of museum cataloging data in information retrieval. The work is interdisciplinary, involving craft science, terminology science, computer science, and museology. In the first part of the dissertation an ontology of concepts of textiles, garments, and accessories is developed for museum cataloging work. The ontology work was done with the help of thesauri, vocabularies, research reports, and standards. The basis of the ontology development was the Museoalan asiasanasto MASA, a thesaurus for museum cataloging work which has been enriched by other vocabularies. Concepts and terms concerning the research object, as well as the material names of textiles, costumes, and accessories, were focused on. The research method was terminological concept analysis complemented by an ontological view of the Semantic Web. The concept structure was based on the hierarchical generic relation. Attention was also paid to other relations between terms and concepts, and between concepts themselves. Altogether 977 concept classes were created. Issues including how to choose and name concepts for the ontology hierarchy and how deep and broad the hierarchy could be are discussed from the viewpoint of the ontology developer and museum cataloger. The second part of the dissertation analyzes why some of the cataloged terms did not match with the developed textile ontology. This problem is significant because it prevents automatic ontological content integration of the cataloged data on the Semantic Web. The research datasets, i.e. the cataloged museum data on textile collections, came from three museums: Espoo City Museum, Lahti City Museum and The National Museum of Finland. The data included 1803 textile, costume, and accessory objects. Unmatched object and textile material names were analyzed. In the case of the object names six categories (475 cases), and of the material names eight categories (423 cases), were found where automatic annotation was not possible. The most common explanation was that the cataloged field was filled with a long sentence comprised of many terms. Sometimes in the compound term, the object name and material, or the name and the way of usage, were combined. As well, numeric values in the material name cataloging field prevented annotation and so did the absence of a corresponding concept in the ontology. Ready-made drop-down lists of materials used in one cataloging system facilitated the annotation. In the case of naming objects and materials, one should use terms in basic form without attributes. The developed textile ontology has been applied in two cultural portals, MuseumFinland and Culturesampo, where one can search for and browse information based on cataloged data using integrated ontologies in an interoperable way. The textile ontology is also part of the national FinnONTO ontology infrastructure. Keywords: annotation, concept, concept analysis, cataloging, museum collection, ontology, Semantic Web, textile collection, textile material
Resumo:
Two methods of pre-harvest inventory were designed and tested on three cutting sites containing a total of 197 500 m3 of wood. These sites were located on flat-ground boreal forests located in northwestern Quebec. Both methods studied involved scaling of trees harvested to clear the road path one year (or more) prior to harvest of adjacent cut-blocks. The first method (ROAD) considers the total road right-of-way volume divided by the total road area cleared. The resulting volume per hectare is then multiplied by the total cut-block area scheduled for harvest during the following year to obtain the total estimated cutting volume. The second method (STRATIFIED) also involves scaling of trees cleared from the road. However, in STRATIFIED, log scaling data are stratified by forest stand location. A volume per hectare is calculated for each stretch of road that crosses a single forest stand. This volume per hectare is then multiplied by the remaining area of the same forest stand scheduled for harvest one year later. The sum of all resulting estimated volumes per stand gives the total estimated cutting-volume for all cut-blocks adjacent to the studied road. A third method (MNR) was also used to estimate cut-volumes of the sites studied. This method represents the actual existing technique for estimating cutting volume in the province of Quebec. It involves summing the cut volume for all forest stands. The cut volume is estimated by multiplying the area of each stand by its estimated volume per hectare obtained from standard stock tables provided by the governement. The resulting total estimated volume per cut-block for all three methods was then compared with the actual measured cut-block volume (MEASURED). This analysis revealed a significant difference between MEASURED and MNR methods with the MNR volume estimate being 30 % higher than MEASURED. However, no significant difference from MEASURED was observed for volume estimates for the ROAD and STRATIFIED methods which respectively had estimated cutting volumes 19 % and 5 % lower than MEASURED. Thus the ROAD and STRATIFIED methods are good ways to estimate cut-block volumes after road right-of-way harvest for conditions similar to those examined in this study.