4 resultados para Direct timeintegration methods
em Helda - Digital Repository of University of Helsinki
Resumo:
The aim of this thesis was to develop measurement techniques and systems for measuring air quality and to provide information about air quality conditions and the amount of gaseous emissions from semi-insulated and uninsulated dairy buildings in Finland and Estonia. Specialization and intensification in livestock farming, such as in dairy production, is usually accompanied by an increase in concentrated environmental emissions. In addition to high moisture, the presence of dust and corrosive gases, and widely varying gas concentrations in dairy buildings, Finland and Estonia experience winter temperatures reaching below -40 ºC and summer temperatures above +30 ºC. The adaptation of new technologies for long-term air quality monitoring and measurement remains relatively uncommon in dairy buildings because the construction and maintenance of accurate monitoring systems for long-term use are too expensive for the average dairy farmer to afford. Though the documentation of accurate air quality measurement systems intended mainly for research purposes have been made in the past, standardised methods and the documentation of affordable systems and simple methods for performing air quality and emissions measurements in dairy buildings are unavailable. In this study, we built three measurement systems: 1) a Stationary system with integrated affordable sensors for on-site measurements, 2) a Wireless system with affordable sensors for off-site measurements, and 3) a Mobile system consisting of expensive and accurate sensors for measuring air quality. In addition to assessing existing methods, we developed simplified methods for measuring ventilation and emission rates in dairy buildings. The three measurement systems were successfully used to measure air quality in uninsulated, semi-insulated, and fully-insulated dairy buildings between the years 2005 and 2007. When carefully calibrated, the affordable sensors in the systems gave reasonably accurate readings. The spatial air quality survey showed high variation in microclimate conditions in the dairy buildings measured. The average indoor air concentration for carbon dioxide was 950 ppm, for ammonia 5 ppm, for methane 48 ppm, for relative humidity 70%, and for inside air velocity 0.2 m/s. The average winter and summer indoor temperatures during the measurement period were -7º C and +24 ºC for the uninsulated, +3 ºC and +20 ºC for the semi-insulated and +10 ºC and +25 ºC for the fully-insulated dairy buildings. The measurement results showed that the uninsulated dairy buildings had lower indoor gas concentrations and emissions compared to fully insulated buildings. Although occasionally exceeded, the ventilation rates and average indoor air quality in the dairy buildings were largely within recommended limits. We assessed the traditional heat balance, moisture balance, carbon dioxide balance and direct airflow methods for estimating ventilation rates. The direct velocity measurement for the estimation of ventilation rate proved to be impractical for naturally ventilated buildings. Two methods were developed for estimating ventilation rates. The first method is applicable in buildings in which the ventilation can be stopped or completely closed. The second method is useful in naturally ventilated buildings with large openings and high ventilation rates where spatial gas concentrations are heterogeneously distributed. The two traditional methods (carbon dioxide and methane balances), and two newly developed methods (theoretical modelling using Fick s law and boundary layer theory, and the recirculation flux-chamber technique) were used to estimate ammonia emissions from the dairy buildings. Using the traditional carbon dioxide balance method, ammonia emissions per cow from the dairy buildings ranged from 7 g day-1 to 35 g day-1, and methane emissions per cow ranged from 96 g day-1 to 348 g day-1. The developed methods proved to be as equally accurate as the traditional methods. Variation between the mean emissions estimated with the traditional and the developed methods was less than 20%. The developed modelling procedure provided sound framework for examining the impact of production systems on ammonia emissions in dairy buildings.
Resumo:
Thrombophilia (TF) predisposes both to venous and arterial thrombosis at a young age. TF may also impact the thrombosis or stenosis of hemodialysis (HD) vascular access in patients with end-stage renal disease (ESRD). When involved in severe thrombosis TF may associate with inappropriate response to anticoagulation. Lepirudin, a potent direct thrombin inhibitor (DTI), indicated for heparin-induced thrombocytopenia-related thrombosis, could offer a treatment alternative in TF. Monitoring of narrow-ranged lepirudin demands new insights also in laboratory. The above issues constitute the targets in this thesis. We evaluated the prevalence of TF in patients with ESRD and its impact upon thrombosis- or stenosis-free survival of the vascular access. Altogether 237 ESRD patients were prospectively screened for TF and thrombogenic risk factors prior to HD access surgery in 2002-2004 (mean follow-up of 3.6 years). TF was evident in 43 (18%) of the ESRD patients, more often in males (23 vs. 9%, p=0.009). Known gene mutations of FV Leiden and FII G20210A occurred in 4%. Vascular access sufficiently matured in 226 (95%). The 1-year thrombosis- and stenosis-free access survival was 72%. Female gender (hazards ratio, HR, 2.5; 95% CI 1.6-3.9) and TF (HR 1.9, 95% CI 1.1-3.3) were independent risk factors for the shortened thrombosis- and stenosis-free survival. Additionally, TF or thrombogenic background was found in relatively young patients having severe thrombosis either in hepatic veins (Budd-Chiari syndrome, BCS, one patient) or inoperable critical limb ischemia (CLI, six patients). Lepirudin was evaluated in an off-label setting in the severe thrombosis after inefficacious traditional anticoagulation without other treatment options except severe invasive procedures, such as lower extremity amputation. Lepirudin treatments were repeatedly monitored clinically and with laboratory assessments (e.g. activated partial thromboplastin time, APTT). Our preliminary studies with lepirudin in thrombotic calamities appeared safe, and no bleeds occurred. An effective DTI lepirudin calmed thrombosis as all patients gradually recovered. Only one limb amputation was performed 3 years later during the follow-up (mean 4 years). Furthermore, we aimed to overcome the limitations of APTT and confounding effects of warfarin (INR of 1.5-3.9) and lupus anticoagulant (LA). Lepirudin responses were assessed in vitro by five specific laboratory methods. Ecarin chromogenic assay (ECA) or anti-Factor IIa (anti-FIIa) correlated precisely (r=0.99) with each other and with spiked lepirudin in all plasma pools: normal, warfarin, and LA-containing plasma. In contrast, in the presence of warfarin and LA both APTT and prothrombinase-induced clotting time (PiCT®) were limited by non-linear and imprecise dose responses. As a global coagulation test APTT is useful in parallel to the precise chromogenic methods ECA or Anti-FIIa in challenging clinical situations. Lepirudin treatment requires multidisciplinary approach to ensure appropriate patient selection, interpretation of laboratory monitoring, and treatment safety. TF seemed to be associated with complicated thrombotic events, in venous (BCS), arterial (CLI), and vascular access systems. TF screening should be aimed to patients with repeated access complications or prior unprovoked thromboembolic events. Lepirudin inhibits free and clot-bound thrombin which heparin fails to inhibit. Lepirudin seems to offer a potent and safe option for treatment of severe thrombosis. Multi-centered randomized trials are necessary to assess the possible management of complicated thrombotic events with DTIs like lepirudin and seek prevention options against access complications.
Resumo:
Myotonic dystrophies type 1 (DM1) and type 2 (DM2) are the most common forms of muscular dystrophy affecting adults. They are autosomal dominant diseases caused by microsatellite tri- or tetranucleotide repeat expansion mutations in transcribed but not translated gene regions. The mutant RNA accumulates in nuclei disturbing the expression of several genes. The more recently identified DM2 disease is less well known, yet more than 300 patients have been confirmed in Finland thus far, and the true number is believed to be much higher. DM1 and DM2 share some features in general clinical presentation and molecular pathology, yet they show distinctive differences, including disease severity and differential muscle and fiber type involvement. However, the molecular differences underlying DM1 and DM2 muscle pathology are not well understood. Although the primary tissue affected is muscle, both DMs show a multisystemic phenotype due to wide expression of the mutation-carrying genes. DM2 is particularly intriguing, as it shows an incredibly wide spectrum of clinical manifestations. For this reason, it constitutes a real diagnostic challenge. The core symptoms in DM2 include proximal muscle weakness, muscle pain, myotonia, cataracts, cardiac conduction defects and endocrinological disturbations; however, none of these is mandatory for the disease. Myalgic pains may be the most disabling symptom for decades, sometimes leading to incapacity for work. In addition, DM2 may cause major socio-economical consequences for the patient, if not diagnosed, due to misunderstanding and false stigmatization. In this thesis work, we have (I) improved DM2 differential diagnostics based on muscle biopsy, and (II) described abnormalities in mRNA and protein expression in DM1 and DM2 patient skeletal muscles, showing partial differences between the two diseases, which may contribute to muscle pathology in these diseases. This is the first description of histopathological differences between DM1 and DM2, which can be used in differential diagnostics. Two novel high-resolution applications of in situ -hybridization have been described, which can be used for direct visualization of the DM2 mutation in muscle biopsy sections, or mutation size determination on extended DNA-fibers. By measuring protein and mRNA expression in the samples, differential changes in expression patterns affecting contractile proteins, other structural proteins and calcium handling proteins in DM2 compared to DM1 were found. The dysregulation at mRNA level was caused by altered transciption and abnormal splicing. The findings reported here indicate that the extent of aberrant splicing is higher in DM2 compared to DM1. In addition, the described abnormalities to some extent correlate to the differences in fiber type involvement in the two disorders.
Resumo:
Positron emission tomography (PET) is a molecular imaging technique that utilises radiopharmaceuticals (radiotracers) labelled with a positron-emitting radionuclide, such as fluorine-18 (18F). Development of a new radiotracer requires an appropriate radiosynthesis method: the most common of which with 18F is nucleophilic substitution with [18F]fluoride ion. The success of the labelling reaction is dependent on various factors such as the reactivity of [18F]fluoride, the structure of the target compound in addition to the chosen solvent. The overall radiosynthesis procedure must be optimised in terms of radiochemical yield and quality of the final product. Therefore, both quantitative and qualitative radioanalytical methods are essential in developing radiosynthesis methods. Furthermore, biological properties of the tracer candidate need to be evaluated by various pre-clinical studies in animal models. In this work, the feasibility of various nucleophilic 18F-fluorination strategies were studied and a labelling method for a novel radiotracer, N-3-[18F]fluoropropyl-2beta-carbomethoxy-3beta-4-fluorophenyl)nortropane ([18F]beta-CFT-FP), was optimised. The effect of solvent was studied by labelling a series of model compounds, 4-(R1-methyl)benzyl R2-benzoates. 18F-Fluorination reactions were carried out both in polar aprotic and protic solvents (tertiary alcohols). Assessment of the 18F-fluorinated products was studied by mass spectrometry (MS) in addition to conventional radiochromatographic methods, using radiosynthesis of 4-[18F]fluoro-N-[2-[1-(2-methoxyphenyl)-1-piperazinyl]ethyl-N-2-pyridinyl-benzamide (p-[18F]MPPF) as a model reaction. Labelling of [18F]beta-CFT-FP was studied using two 18F-fluoroalkylation reagents, [18F]fluoropropyl bromide and [18F]fluoropropyl tosylate, as well as by direct 18F-fluorination of sulfonate ester precursor. Subsequently, the suitability of [18F]beta-CFT-FP for imaging dopamine transporter (DAT) was evaluated by determining its biodistribution in rats. The results showed that protic solvents can be useful co-solvents in aliphatic 18F-fluorinations, especially in the labelling of sulfonate esters. Aromatic 18F-fluorination was not promoted in tert-alcohols. Sensitivity of the ion trap MS was sufficient for the qualitative analysis of the 18F-labelled products; p-[18F]MPPF was identified from the isolated product fraction with a mass-to-charge (m/z) ratio of 435 (i.e. protonated molecule [M+H]+). [18F]beta-CFT-FP was produced most efficiently via [18F]fluoropropyl tosylate, leading to sufficient radiochemical yield and specific radioactivity for PET studies. The ex vivo studies in rats showed fast kinetics as well as the specific uptake of [18F]beta-CFT-FP to the DAT rich brain regions. Thus, it was concluded that [18F]beta-CFT-FP has potential as a radiotracer for imaging DAT by PET.