8 resultados para Diffraction
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis is a study of the x-ray scattering properties of tissues and tumours of the breast. Clinical radiography is based on the absorption of the x-rays when passing right through the human body and gives information about the densities of the tissues. Besides being absorbed, x-rays may change their direction within the tissues due to elastic scattering or even to refraction. The phenomenon of scattering is a nuisance to radiography in general, and to mammography in particular, because it reduces the quality of the images. However, scattered x-rays bear very useful information about the structure of the tissues at the supra-molecular level. Some pathologies, like breast cancer, produce alterations to the structures of the tissues, being especially evident in collagen-rich tissues. On the other hand, the change of direction due to refraction of the x-rays on the tissue boundaries can be mapped. The diffraction enhanced imaging (DEI) technique uses a perfect crystal to convert the angular deviations of the x-rays into intensity variations, which can be recorded as images. This technique is of especial interest in the cases were the densities of the tissues are very similar (like in mammography) and the absorption images do not offer enough contrast. This thesis explores the structural differences existing in healthy and pathological collagen in breast tissue samples by the small-angle x-ray scattering (SAXS) technique and compares these differences with the morphological information found in the DEI images and the histo-pathology of the same samples. Several breast tissue samples were studied by SAXS technique in the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Scattering patterns of the different tissues of the breast were acquired and compared with the histology of the samples. The scattering signals from adipose tissue (fat), connective tissue (collagen) and necrotic tissue were identified. Moreover, a clear distinction could be done between the scattering signals from healthy collagen and from collagen from an invasive tumour. Scattering from collagen is very characteristic. It includes several scattering peaks and scattering features that carry information about the size and the spacing of the collagen fibrils in the tissues. It was found that the collagen fibrils in invaded tumours were thinner and had a d-spacing length 0,7% longer that fibrils from healthy tumours. The scattering signals from the breast tissues were compared with the histology by building colour-coded maps across the samples. They were also imaged with the DEI technique. There was a total agreement between the scattering maps, the morphological features seen in the images and the information of the histo- pathological examination. The thesis demonstrates that the x-ray scattering signal can be used to characterize tissues and that it carries important information about the pathological state of the breast tissues, thus showing the potential of the SAXS technique as a possible diagnostic tool for breast cancer.
Resumo:
By detecting leading protons produced in the Central Exclusive Diffractive process, p+p → p+X+p, one can measure the missing mass, and scan for possible new particle states such as the Higgs boson. This process augments - in a model independent way - the standard methods for new particle searches at the Large Hadron Collider (LHC) and will allow detailed analyses of the produced central system, such as the spin-parity properties of the Higgs boson. The exclusive central diffractive process makes possible precision studies of gluons at the LHC and complements the physics scenarios foreseen at the next e+e− linear collider. This thesis first presents the conclusions of the first systematic analysis of the expected precision measurement of the leading proton momentum and the accuracy of the reconstructed missing mass. In this initial analysis, the scattered protons are tracked along the LHC beam line and the uncertainties expected in beam transport and detection of the scattered leading protons are accounted for. The main focus of the thesis is in developing the necessary radiation hard precision detector technology for coping with the extremely demanding experimental environment of the LHC. This will be achieved by using a 3D silicon detector design, which in addition to the radiation hardness of up to 5×10^15 neutrons/cm2, offers properties such as a high signal-to- noise ratio, fast signal response to radiation and sensitivity close to the very edge of the detector. This work reports on the development of a novel semi-3D detector design that simplifies the 3D fabrication process, but conserves the necessary properties of the 3D detector design required in the LHC and in other imaging applications.
Resumo:
In recent years there has been growing interest in selecting suitable wood raw material to increase end product quality and to increase the efficiency of industrial processes. Genetic background and growing conditions are known to affect properties of growing trees, but only a few parameters reflecting wood quality, such as volume and density can be measured on an industrial scale. Therefore research on cellular level structures of trees grown in different conditions is needed to increase understanding of the growth process of trees leading to desired wood properties. In this work the cellular and cell wall structures of wood were studied. Parameters, such as the mean microfibril angle (MFA), the spiral grain angles, the fibre length, the tracheid cell wall thickness and the cross-sectional shape of the tracheid, were determined as a function of distance from the pith towards the bark and mutual dependencies of these parameters were discussed. Samples from fast-grown trees, which belong to a same clone, grown in fertile soil and also from fertilised trees were measured. It was found that in fast-grown trees the mean MFA decreased more gradually from the pith to the bark than in reference stems. In fast-grown samples cells were shorter, more thin-walled and their cross-sections were rounder than in slower-grown reference trees. Increased growth rate was found to cause an increase in spiral grain variation both within and between annual rings. Furthermore, methods for determination of the mean MFA using x-ray diffraction were evaluated. Several experimental arrangements including the synchrotron radiation based microdiffraction were compared. For evaluation of the data analysis procedures a general form for diffraction conditions in terms of angles describing the fibre orientation and the shape of the cell was derived. The effects of these parameters on the obtained microfibril angles were discussed. The use of symmetrical transmission geometry and tangentially cut samples gave the most reliable MFA values.
Resumo:
At the Tevatron, the total p_bar-p cross-section has been measured by CDF at 546 GeV and 1.8 TeV, and by E710/E811 at 1.8 TeV. The two results at 1.8 TeV disagree by 2.6 standard deviations, introducing big uncertainties into extrapolations to higher energies. At the LHC, the TOTEM collaboration is preparing to resolve the ambiguity by measuring the total p-p cross-section with a precision of about 1 %. Like at the Tevatron experiments, the luminosity-independent method based on the Optical Theorem will be used. The Tevatron experiments have also performed a vast range of studies about soft and hard diffractive events, partly with antiproton tagging by Roman Pots, partly with rapidity gap tagging. At the LHC, the combined CMS/TOTEM experiments will carry out their diffractive programme with an unprecedented rapidity coverage and Roman Pot spectrometers on both sides of the interaction point. The physics menu comprises detailed studies of soft diffractive differential cross-sections, diffractive structure functions, rapidity gap survival and exclusive central production by Double Pomeron Exchange.
Resumo:
The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment ofthe central system allows detailed QCD studies and searches for exotic mesonstates, such as glueballs, hybrids and new charmonium-like states. It wouldalso provide a good testing ground for detailed studies of heavy quarkonia. Dueto its central barrel performance, ALICE can accurately measure the low-masscentral systems with good purity. The efficiency of the Forward MultiplicityDetector (FMD) and the Forward Shower Counter (FSC) system for detectingrapidity gaps is shown to be adequate for the proposed studies. With thisdetector arrangement, valuable new data can be obtained by tagging centraldiffractive processes.