4 resultados para Depressielijst (DL)

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present experimental study was to find out if the applications of coralline hydroxyapatite (HA) can be improved by using bioabsorbable containment or binding substance with particulate HA in mandibular contour augmentation and by using bioabsorbable fibre-reinforced HA blocks in filling bone defects and in anterior lumbar interbody fusion. The use of a separate curved polyglycolide (PGA) containment alone or together with a fast resorbing polyglycolide/polylactide (PGA/PLA) binding substance were compared to the conventional non-contained method in ridge augmentation in sheep. The contained methods decreased HA migration, but the augmentations did not differ significantly. The use of the containment caused a risk for wound dehiscence and infection. Histologically there was a rapid connective tissue ingrowth into the HA graft and it was more abundant with the PGA containment compared to the non-contained augmentation and even additionally rich when the HA particles were bound with PGA/PLA copolymer. However, the bone ingrowth was best in the non-contained augmentation exceeding 10-12 % of the total graft area at 24 weeks. Negligible or no bone ingrowth was seen in the cases where the polymer composite was added to the HA particles and, related to that, foreign-body type cells were seen at the interface between the HA and host bone. The PGA and poly-dl/l-lactide (PDLLA) fibre-reinforced coralline HA blocks were studied in the metaphyseal and in the diaphyseal defects in rabbits. A rapid bone ingrowth was seen inside the both types of implants. Both PGA and PDLLA fibres induced an inflammatory fibrous reaction around themselves but it did not hinder the bone ingrowth. The bone ingrowth pattern was directed according to the loading conditions so that the load-carrying cortical ends of the implants as well as the implants sited in the diaphyseal defects were the most ossified. The fibre-reinforced coralline HA implants were further studied as stand-alone grafts in the lumbar anterior interbody implantation in pigs. The strength of the HA implants proved not to be adequate, the implants fractured in six weeks and the disc space was gradually lost similarly to that of the discectomized spaces. Histologically, small quantities of bone ingrowth was seen in some of the PGA and PDLLA reinforced coralline implants while no bone formation was identified in any of the PDLLA reinforced synthetic porous HA implants. While fragmented, the inner structure of the implants was lost, the bone ingrowth was minimal, and the disc was replaced by the fibrous connective tissue. When evaluated radiologically the grade of ossification was assessed as better than histologically, and, when related to the histologic findings, CT was more dependable than the plain films to show ossification of the implanted disc space. Local kyphosis was a frequent finding along with anterior bone bridging and ligament ossification as a consequence of instability of the implanted segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this series of studies was to evaluate the biocompatibility of poly (ortho) ester (POE), copolymer of ε-caprolactone and D,L-lactide [P (ε-CL/DL-LA)] and the composite of P(ε-CL/DL-LA) and tricalciumphosphate (TCP) as bone filling material in bone defects. Tissue reactions and resorption times of two solid POE-implants (POE 140 and POE 46) with different methods of sterilization (gamma- and ethylene oxide sterilization), P(ε-CL/DL-LA)(40/60 w/w) in paste form and 50/50 w/w composite of 40/60 w/w P(ε-CL/DL-LA) and TCP and 27/73 w/w composite of 60/40 w/w P(ε-CL/DL-LA) and TCP were examined in experimental animals. The follow-up times were from one week to 52 weeks. The bone samples were evaluated histologically and the soft tissue samples histologically, immunohistochemically and electronmicroscopically. The results showed that the resorption time of gamma sterilized POE 140 was eight weeks and ethylene oxide sterilized POE 140 13 weeks in bone. The resorption time of POE 46 was more than 24 weeks. The gamma sterilized rods started to erode from the surface faster than ethylene oxide sterilized rods for both POEs. Inflammation in bone was from slight to moderate with POE 140 and moderate with POE 46. No highly fluorescent layer of tenascin or fibronectin was found in the soft tissue. Bone healing at the sites of implantation was slower than at control sites with the copolymer in small bone defects. The resorption time for the copolymer was over one year. Inflammation in bone was mostly moderate. Bone healing at the sites of implantation was also slower than at the control sites with the composite in small and large mandibular bone defects. Bone formation had ceased at both sites by the end of follow-up in large mandibular bone defects. The ultrastructure of the connective tissue was normal during the period of observation. It can be concluded that the method of sterilization influenced the resorption time of both POEs. Gamma sterilized POE 140 could have been suitable material for filling small bone defects, whereas the degradation times of solid EO-sterilized POE 140 and POE 46 were too slow to be considered as bone filling material. Solid material is difficult to contour, which can be considered as a disadvantage. The composites were excellent to handle, but the degradation time of the polymer and the composites were too slow. Therefore, the copolymer and the composite can not be recommended as bone filling material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractures and arthritic joint destruction are common in the hand. A reliable and stable fracture fixation can be achieved by metal implants, which however, become unnecessary or even harmful after consolidation. The silicone implant arthroplasty is the current method of choice for reconstruction of metacarpophalangeal joints in rheumatoid patients. However, the outcome tends to worsen with long-term follow-up and implant-related complications become frequent. To address these problems, bioabsorbable implants were designed for the hand area. Aims of the studies were: 1) to evaluate the biomechanical stabilities provided by self- reinforced (SR) bioabsorbable implants in a transverse and an oblique osteotomy of small tubular bones and to compare them with those provided by metal implants; 2) to evaluate the SR poly-L/DL-lactide 70/30 plate for osteosynthesis in a proof-of-principle type of experiment in three cases of hand injuries; and 3) to evaluate the poly-L/D-lactide (PLA) 96/4 joint scaffold, a composite joint implant with a supplementary intramedullary Polyactive® stem and Swanson silicone implant in an experimental small joint arthroplasty model. Methods used were: 1) 112 fresh frozen human cadaver and 160 pig metacarpal bones osteotomised transversally or obliquely, respectively, and tested ex vivo in three point bending and in torsion; 2) three patient cases of complex hand injuries; and 3) the fifth metacarpophalangeal joints reconstructed in 18 skeletally-mature minipigs and studied radiologically and histologically. The initial fixation stabilities provided by bioabsorbable implants in the tubular bones of the hand were comparable with currently-employed metal fixation techniques, and were sufficient for fracture stabilisation in three preliminary cases in the hand. However, in torsion the stabilities provided by bioabsorbable implants were lower than that provided by metal counterparts. The bioabsorbable plate enhanced the bending stability for the bioabsorbable fixation construct. PLA 96/4 joint scaffolds demonstrated good biocompatibility and enabled fibrous tissue in-growth in situ. After scaffold degradation, a functional, stable pseudarthrosis with dense fibrous connective tissue was formed. However, the supplementary Polyactive® stem caused a deleterious tissue reaction and therefore the stem can not be applied to the composite joint implant. The bioabsorbable implants have potential for use in clinical hand surgery, but have to await validation in clinical patient series and controlled trials.