12 resultados para Dengue viruses

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dengue is a mosquito-borne viral disease caused by the four dengue virus serotypes (DENV-1-4) and is currently considered as the most important arthropod-borne viral disease in the world. Nearly half of the human population lives in risk areas, and 50-100 million infections occur yearly according to World Health Organization. The disease can vary from a mild febrile disease to severe haemorrhagic fever and shock. A secondary infection with heterologous serotype increases the risk for severe disease outcome. During the last three decades the impact of dengue has dramatically increased in the endemic areas including the tropics and subtropics of the world. The current situation with massive epidemics of severe disease forms has been associated with socio-ecological changes that have increased the transmission and enabled the co-circulation of different serotypes. Consequently, an increase of dengue has also been observed in travelers visiting these areas. Currently approximately 30 cases are diagnosed yearly in Finnish travelers. In travelers dengue is rarely a life-threatening disease, however in the current study, a fatality was documented in a young Finnish patient who experienced a prolonged primary dengue infection. To improve particularly early laboratory diagnostics, a novel real-time RT-PCR method was developed for the detection of DENV-1-4 RNA based on TaqMan chemistry. The method was shown to be sensitive and specific for detecting DENV RNA and suitable for diagnostic use. The newly developed real-time RT-PCR was compared to other available early diagnostic methods including IgM and NS1 antigen detection using a panel of selected patient samples. The results suggest that the best diagnostic rates are achieved by a combination of IgM with RNA or NS1 detection. The dengue virus strains studied here included the first DENV strains isolated from serum samples of Finnish travelers collected in 2000-2005. The results of sequence analysis demonstrated that the 11 isolates included all four DENV serotypes and presented a global sample of DENV strains from different geographical areas including Asia, Africa and South America. In the present study sequence analysis was also carried out for a collection of 23 novel DENV-2 isolates from Venezuelan patients collected in 1999-2005. The Venezuelan DENV-2 exclusively represented the American-Asian genotype, suggesting that no foreign DENV-2 lineages have recently been introduced to the country. The results also suggest that the DENV-2 viruses detected earlier from Venezuela have been maintained in the area where they have evolved into several lineages. This is in contrast to the pattern observed in some other dengue endemic areas, where introductions of novel virus types and lineages are frequently detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary history of biological entities is recorded within their nucleic acid sequences and can (sometimes) be deciphered by thorough genomic analysis. In this study we sought to gain insights into the diversity and evolution of bacterial and archaeal viruses. Our primary interest was pointed towards those virus groups/families for which comprehensive genomic analysis was not previously possible due to the lack of sufficient amount of genomic data. During the course of this work twenty-five putative proviruses integrated into various prokaryotic genomes were identified, enabling us to undertake a comparative genomics approach. This analysis allowed us to test the previously formulated evolutionary hypotheses and also provided valuable information on the molecular mechanisms behind the genome evolution of the studied virus groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses of Archaea are the least studied group of viruses. Fewer than 50 archaeal viruses have been reported which constitutes less than one percent of all the isolated prokaryotic viruses. Only about one third of the isolated archaeal viruses infect halophiles. The diversity of haloviruses, virus ecology in highly saline environments and the interactions of haloviruses with their hosts have been little studied. The exiguous knowledge available on halophilic systems is not only due to inadequate sampling but also reflects the extra challenge highly saline systems set on biochemical studies. In this study six new haloviruses were isolated and characterized. Viruses included four archaeal viruses and two bacteriophages. All of the other isolates exhibited head-tail morphology, except SH1 which was the first tailless icosahedral virus isolated from a high salt environment. Production and purification procedures were set up for all of these viruses and they were subjected to stability determinations. Archaeal virus SH1 was studied in more detail. Biochemical studies revealed an internal membrane underneath the protein capsid and a linear dsDNA genome. The overall structure of SH1 resembles phages PRD1, PM2 and Bam35 as well as an archaeal virus STIV. SH1 possesses about 15 structural proteins that form complexes under non-reducing conditions. Quantitative dissociation provided information about the positions of these proteins in the virion. The life cycle of SH1 was also studied. This lytic virus infects Haloarcula hispanica. Adsorption to the host cells is fairly inefficient and the life cycle rather long. Finally, virus responses in a variety of ionic conditions were studied. It was discovered that all of the studied viruses from low salt, marine and high salt environments tolerated larger range of salinities than their bacterial or archaeal hosts. The adsorption efficiency was not determined by the natural environment of a virus. Even though viruses with the slowest binding kinetics were among the haloviruses, fast binders were observed in viruses from all environments. When the salinity was altered, the virus adsorption responses were diverse. Four different behavioral patterns were observed: virus binding increased or decreased in increasing salinity, adsorption maximum was at a particular salt concentration or the salinity did not affect the binding. The way the virus binding was affected did not correlate with the environment, virus morphology or the organism the virus infects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cassava brown streak disease (CBSD) was described for the first time in Tanganyika (now Tanzania) about seven decades ago. Tanganyika (now Tanzania) about seven decades ago. It was endemic in the lowland areas of East Africa and inland parts of Malawi and caused by Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae). However, in 1990s CBSD was observed at high altitude areas in Uganda. The causes for spread to new locations were not known.The present work was thus initiated to generate information on genetic variability, clarify the taxonomy of the virus or viruses associated with CBSD in Eastern Africa as well as to understand the evolutionary forces acting on their genes. It also sought to develop a molecular based diagnostic tool for detection of CBSD-associated virus isolates. Comparison of the CP-encoding sequences of CBSD-associated virus isolates collected from Uganda and north-western Tanzania in 2007 and the partial sequences available in Genbank revealed occurrence of two genetically distinct groups of isolates. Two isolates were selected to represent the two groups. The complete genomes of isolates MLB3 (TZ:Mlb3:07) and Kor6 (TZ:Kor6:08) obtained from North-Western (Kagera) and North-Eastern (Tanga) Tanzania, respectively, were sequenced. The genomes were 9069 and 8995 nucleotides (nt), respectively. They translated into polyproteins that were predicted to yield ten mature proteins after cleavage. Nine proteins were typical in the family Potyviridae, namely P1, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP, but the viruses did not contain HC-Pro. Interestingly, genomes of both isolates contained a Maf/HAM1-like sequence (HAM1h; 678 nucleotides, 25 kDa) recombined between the NIb and CP domains in the 3’-proximal part of the genomes. HAM1h was also identified in Euphorbia ringspot virus (EuRSV) whose sequence was in GenBank. The HAM1 gene is widely spread in both prokaryotes and eukaryotes. In yeast (Saccharomyces cerevisiae) it is known to be a nucleoside triphosphate (NTP) pyrophosphatase. Novel information was obtained on the structural variation at the N-termini of polyproteins of viruses in the genus Ipomovirus. Cucumber vein yellowing virus (CVYV) and Squash vein yellowing virus (SqVYV) contain a duplicated P1 (P1a and P1b) but lack the HC-Pro. On the other hand, Sweet potato mild mottle virus (SPMMV), has a single but large P1 and has HC-Pro. Both virus isolates (TZ:Mlb3:07 & TZ:Kor6:08) characterized in this study contained a single P1 and lacked the HC-Pro which indicates unique evolution in the family Potyviridae. Comparison of 12 complete genomes of CBSD-associated viruses which included two genomes characterized in this study, revealed genetic identity of 69.0–70.3% (nt) and amino acid (aa) identities of 73.6–74.4% at polyprotein level. Comparison was also made among 68 complete CP sequences, which indicated 69.0-70.3 and 73.6-74.4 % identity at nt and aa levels, respectively. The genetic variation was large enough for dermacation of CBSD-associated virus isolates into two distinct species. The name CBSV was retained for isolates that were related to CBSV isolates available in database whereas the new virus described for the first time in this study was named Ugandan cassava brown streak virus (UCBSV) by the International Committee on Virus Taxonomy (ICTV). The isolates TZ:Mlb3:07 and TZ:Kor6:08 belong to UCBSV and CBSV, respectively. The isolates of CBSV and UCBSV were 79.3-95.5% and 86.3-99.3 % identitical at nt level, respectively, suggesting more variation amongst CBSV isolates. The main sources of variation in plant viruses are mutations and recombination. Signals for recombination events were detected in 50% of isolates of each virus. Recombination events were detected in coding and non-coding (3’-UTR) sequences except in the 5’UTR and P3. There was no evidence for recombination between isolates of CBSV and UCBSV. The non-synonomous (dN) to synonomous (dS) nucleotide substitution ratio (ω) for the HAM1h and CP domains of both viruses were ≤ 0.184 suggesting that most sites of these proteins were evolving under strong purifying selection. However, there were individual amino acid sites that were submitted to adaptive evolution. For instance, adaptive evolution was detected in the HAM1h of UCBSV (n=15) where 12 aa sites were under positive selection (P< 0.05) but not in CBSV (n=12). The CP of CBSV (n=23) contained 12 aa sites (p<0.01) while only 5 aa sites in the CP gene of UCBSV were predicted to be submitted to positive selection pressure (p<0.01). The advantages offered by the aa sites under positive selection could not be established but occurrence of such sites in the terminal ends of UCBSV-HAMIh, for example, was interpreted as a requirement for proteolysis during polyprotein processing. Two different primer pairs that simultaneously detect UCBSV and CBSV isolates were developed in this study. They were used successfully to study distribution of CBSV, UCBSV and their mixed infections in Tanzania and Uganda. It was established that the two viruses co-infect cassava and that incidences of co-infection could be as high as 50% around Lake Victoria on the Tanzanian side. Furthermore, it was revealed for the first time that both UCBSV and CBSV were widely distributed in Eastern Africa. The primer pair was also used to confirm infection in a close relative of cassava, Manihot glaziovii (Müller Arg.) with CBSV. DNA barcoding of M. glaziovii was done by sequencing the matK gene. Two out of seven M. glaziovii from the coastal areas of Korogwe and Kibaha in north eastern Tanzania were shown to be infected by CBSV but not UCBSV isolates. Detection in M. glaziovii has an implication in control and management of CBSD as it is likely to serve as virus reservoir. This study has contributed to the understanding of evolution of CBSV and UCBSV, which cause CBSD epidemic in Eastern Africa. The detection tools developed in this work will be useful in plant breeding, verification of the phytosanitary status of materials in regional and international movement of germplasm, and in all diagnostic activities related to management of CBSD. Whereas there are still many issues to be resolved such as the function and biological significance of HAM1h and its origin, this work has laid a foundation upon which the studies on these aspects can be based.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced stage head and neck cancers (HNC) with distant metastasis, as well as prostate cancers (PC), are devastating diseases currently lacking efficient treatment options. One promising developmental approach in cancer treatment is the use of oncolytic adenoviruses, especially in combination therapy with conventional cancer therapies. The safety of the approach has been tested in many clinical trials. However, antitumor efficacy needs to be improved in order to establish oncolytic viruses as a viable treatment alternative. To be able to test in vivo the effects on anti-tumor efficiency of a multimodal combination therapy of oncolytic adenoviruses with the standard therapeutic combination of radiotherapy, chemotherapy and Cetuximab monoclonal antibody (mAb), a xenograft HNC tumor model was developed. This model mimics the typical clinical situation as it is initially sensitive to cetuximab, but resistance develops eventually. Surprisingly, but in agreement with recent findings for chemotherapy and radiotherapy, a higher proportion of cells positive for HNC cancer stem cell markers were found in the tumors refractory to cetuximab. In vitro as well as in vivo results found in this study support the multimodal combination therapy of oncolytic adenoviruses with chemotherapy, radiotherapy and monoclonal antibody therapy to achieve increased anti-tumor efficiency and even complete tumor eradication with lower treatment doses required. In this study, it was found that capsid modified oncolytic viruses have increased gene transfer to cancer cells as well as an increased antitumor effect. In order to elucidate the mechanism of how oncolytic viruses promote radiosensitization of tumor cells in vivo, replicative deficient viruses expressing several promising radiosensitizing viral proteins were tested. The results of this study indicated that oncolytic adenoviruses promote radiosensitization by delaying the repair of DNA double strand breaks in tumor cells. Based on the promising data of the first study, two tumor double-targeted oncolytic adenoviruses armed with the fusion suicide gene FCU1 or with a fully human mAb specific for human Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) were produced. FCU1 encodes a bifunctional fusion protein that efficiently catalyzes the direct conversion of 5-FC, a relatively nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine monophosphate, bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Anti-CTLA4 mAb promotes direct killing of tumor cells via apoptosis and most importantly immune system activation against the tumors. These armed oncolytic viruses present increased anti-tumor efficacy both in vitro and in vivo. Furthermore, by taking advantage of the unique tumor targeted gene transfer of oncolytic adenoviruses, functional high tumor titers but low systemic concentrations of the armed proteins were generated. In addition, supernatants of tumor cells infected with Ad5/3-24aCTLA4, which contain anti-CTLA4 mAb, were able to effectively immunomodulate peripheral blood mononuclear cells (PBMC) of cancer patients with advanced tumors. -- In conclusion, the results presented in this thesis suggest that genetically engineered oncolytic adenoviruses have great potential in the treatment of advanced and metastatic HNC and PC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell division, which leads to the birth of two daughter cells, is essential for the growth and development of all organisms. The reproduction occurs in a series of events separated in time, designated as the cell cycle. The cell cycle progression is controlled by the activity of cyclin-dependent kinases (CDK). CDKs pair with cyclins to become catalytically active and phosphorylate a broad range of substrates required for cell cycle progression. In addition to cyclins, CDKs are regulated by inhibitory and activating phosphorylation events, binding to CDK-inhibitory proteins (CKI), and also by subcellular localization. The control of the CDK activity is crucial in preventing unscheduled progression of the cell cycle with mistakes having potentially hazardous consequences, such as uncontrolled proliferation of the cells, a hallmark of cancer. The mammalian cell cycle is a target of several DNA tumor viruses that can deregulate the host s cell cycle with their viral oncoproteins. A human herpesvirus called Kaposi s sarcoma herpesvirus (KSHV) is implicated in the cause of Kaposi s sarcoma (KS) and lymphoproliferative diseases such as primary effusion lymphomas (PEL). KSHV has pirated several cell cycle regulatory genes that it uses to manipulate its host cell and to induce proliferation. Among these gene products is a cellular cyclin D homologue, called viral cyclin (v-cyclin) that can activate cellular CDKs leading to the phosphorylation of multiple target proteins. Intriguingly, PELs that are naturally infected with KSHV consistently express high levels of CDK inhibitor protein p27Kip1 and still proliferate actively. The aim of this study was to investigate v-cyclin complexes and their activity in PELs, and search for an explanation why CKIs, such as p27Kip1 and p21Cip1 are unable to inhibit cell proliferation in this type of lymphoma. In this study, we found that v-cyclin binds to p27Kip1 in PELs, and confirmed this novel interaction also in the overexpression models. We observed that p27Kip1 associated with v-cyclin was also phosphorylated by a v-cyclin-associated kinase and identified cellular CDK6 as the major kinase partner of v-cyclin responsible for this phosphorylation. Analysis of the p27Kip1 residues targeted by v-cyclin-CDK6 revealed that serine 10 (S10) is the major phosphorylation site during the latent phase of the KSHV replication cycle. This phosphorylation led to the relocalization of p27Kip1 to the cytoplasm, where it is unable to inhibit nuclear cyclin-CDK complexes. In the lytic phase of the viral replication cycle, the preferred phosphorylation site on p27Kip1 by v-cyclin-CDK6 changed to threonine 187 (T187). T187 phosphorylation has been shown to lead to ubiquitin-mediated degradation of p27Kip1 and downregulation of p27Kip1 was also observed here. v-cyclin was detected also in complex with p21Cip1, both in overexpression models and in PELs. Phosphorylation of p21Cip1 on serine 130 (S130) site by v-cyclin-CDK6 functionally inactivated p21Cip1 and led to the circumvention of G1 arrest induced by p21Cip1. Moreover, p21Cip1 phosphorylated by v-cyclin-associated kinase showed reduced binding to CDK2, which provides a plausible explanation why p21Cip1 is unable to inhibit cell cycle progression upon v-cyclin expression. Our findings clarify the mechanisms on how v-cyclin evades the inhibition of cell cycle inhibitors and suggests an explanation to the uncontrolled proliferation of KSHV-infected cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene therapy is a promising novel approach for treating cancers resistant to or escaping currently available modalities. Treatment approaches are based on taking advantage of molecular differences between normal and tumor cells. Various strategies are currently in clinical development with adenoviruses as the most popular vehicle. Recent developments include improving targeting strategies for gene delivery to tumor cells with tumor specific promoters or infectivity enhancement. A rapidly developing field is as well replication competent agents, which allow improved tumor penetration and local amplification of the anti-tumor effect. Adenoviral cancer gene therapy approaches lack cross-resistance with other treatment options and therefore synergistic effects are possible. This study focused on development of adenoviral vectors suitable for treatment of various gynecologic cancer types, describing the development of the field from non-replicating adenoviral vectors to multiple-modified conditional replicating viruses. Transcriptional targeting of gynecologic cancer cells by the use of the promoter of vascular endothelial growth factor receptor type 1 (flt-1) was evaluated. Flt-1 is not expressed in the liver and thus an ideal promoter for transcriptional targeting of adenoviruses. Our studies implied that the flt-1 promoter is active in teratocarcinomas.and therefore a good candidate for development of oncolytic adenoviruses for treatment of this often problematic disease with then poor outcome. A tropism modified conditionally replicating adenovirus (CRAd), Ad5-Δ24RGD, was studied in gynecologic cancers. Ad5-Δ24RGD is an adenovirus selectively replication competent in cells defective in the p16/Rb pathway, including many or most tumor cells. The fiber of Ad5-Δ24RGD contains an integrin binding arginine-glycine-aspartic acid motif (RGD-4C), allowing coxackie-adenovirus receptor independent infection of cancer cells. This approach is attractive because expression levels of CAR are highly variable and often low on primary gynecological cancer cells. Oncolysis could be shown for a wide variety of ovarian and cervical cancer cell lines as well as primary ovarian cancer cell spheroids, a novel system developed for in vitro analysis of CRAds on primary tumor substrates. Biodistribution was evaluated and preclinical safety data was obtained by demonstrating lack of replication in human peripheral blood mononuclear cells. The efficicacy of Ad5-Δ24RGD was shown in different orthotopic murine models including a highly aggressive intraperitoneal model of disseminated ovarian cancer cells, where Ad5-Δ24RGD resulted in complete eradication of intraperitoneal disease in half of the mice. To further improve the selectivity and specificity of CRAds, triple-targeted oncolytic adenoviruses were cloned, featuring the cyclo-oxygenase-2 (cox-2) promoter, E1A transcomplementation and serotype chimerism. Those viruses were evaluated on ovarian cancer cells for specificity and oncolytic potency with regard to two different cox2 versions and three different variants of E1A (wild type, delta24 and delta2delta24). Ad5/3cox2Ld24 emerged as the best combination due to enhanced selectivity without potency lost in vitro or in an aggressive intraperitoneal orthotopic ovarian tumor model. In summary, the preclinical therapeutic efficacy of the CRAds tested in this study, taken together with promising biodistribution and safety data, suggest that these CRAds are interesting candidates for translation into clinical trials for gynecologic cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virotherapy, the use of oncolytic properties of viruses for eradication of tumor cells, is an attractive strategy for treating cancers resistant to traditional modalities. Adenoviruses can be genetically modified to selectively replicate in and destroy tumor cells through exploitation of molecular differences between normal and cancer cells. The lytic life cycle of adenoviruses results in oncolysis of infected cells and spreading of virus progeny to surrounding cells. In this study, we evaluated different strategies for improving safety and efficacy of oncolytic virotherapy against human ovarian adenocarcinoma. We examined the antitumor efficacy of Ad5/3-Δ24, a serotype 3 receptor-targeted pRb-p16 pathway-selective oncolytic adenovirus, in combination with conventional chemotherapeutic agents. We observed synergistic activity in ovarian cancer cells when Ad5/3-Δ24 was given with either gemcitabine or epirubicin, common second-line treatment options for ovarian cancer. Our results also indicate that gemcitabine reduces the initial rate of Ad5/3-Δ24 replication without affecting the total amount of virus produced. In an orthotopic murine model of peritoneally disseminated ovarian cancer, combining Ad5/3-Δ24 with either gemcitabine or epirubicin resulted in greater therapeutic benefit than either agent alone. Another useful approach for increasing the efficacy of oncolytic agents is to arm viruses with therapeutic transgenes such as genes encoding prodrug-converting enzymes. We constructed Ad5/3-Δ24-TK-GFP, an oncolytic adenovirus encoding the thymidine kinase (TK) green fluorescent protein (GFP) fusion protein. This novel virus replicated efficiently on ovarian cancer cells, which correlated with increased GFP expression. Delivery of prodrug ganciclovir (GCV) immediately after infection abrogated viral replication, which might have utility as a safety switch mechanism. Oncolytic potency in vitro was enhanced by GCV in one cell line, and the interaction was not dependent on scheduling of the treatments. However, in murine models of metastatic ovarian cancer, administration of GCV did not add therapeutic benefit to this highly potent oncolytic agent. Detection of tumor progression and virus replication with bioluminescence and fluorescence imaging provided insight into the in vivo kinetics of oncolysis in living mice. For optimizing protocols for upcoming clinical trials, we utilized orthotopic murine models of ovarian cancer to analyze the effect of dose and scheduling of intraperitoneally delivered Ad5/3-Δ24. Weekly administration of Ad5/3-Δ24 did not significantly enhance antitumor efficacy over a single treatment. Our results also demonstrate that even a single intraperitoneal injection of only 100 viral particles significantly increased the survival of mice compared with untreated animals. Improved knowledge of adenovirus biology has resulted in creation of more effective oncolytic agents. However, with more potent therapy regimens an increase in unwanted side-effects is also possible. Therefore, inhibiting viral replication when necessary would be beneficial. We evaluated the antiviral activity of chlorpromazine and apigenin on adenovirus replication and associated toxicity in fresh human liver samples, normal cells, and ovarian cancer cells. Further, human xenografts in mice were utilized to evaluate antitumor efficacy, viral replication, and liver toxicity. Our data suggest that these agents can reduce replication of adenoviruses, which could provide a safety switch in case of replication-associated side-effects. In conclusion, we demonstrate that Ad5/3-Δ24 is a useful oncolytic agent for treatment of ovarian cancer either alone or in combination with conventional chemotherapeutic drugs. Insertion of genes encoding prodrug-converting enzymes into the genome of Ad5/3-Δ24 might not lead to enhanced antitumor efficacy with this highly potent oncolytic virus. As a safety feature, viral activity can be inhibited with pharmacological substances. Clinical trials are however needed to confirm if these preclinical results can be translated into efficacy in humans. Promising safety data seen here, and in previous publications suggest that clinical evaluation of the agent is feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite progress in conventional cancer treatment regimes, metastatic disease essentially remains incurable and new treatment alternatives are needed. Virotherapy is a relatively novel approach in cancer treatment. It harnesses the natural ability of oncolytic viruses to kill the cells they proliferate in and to spread to neighboring cells, thereby amplifying the therapeutic effect of the initial input dose. The use of replicating, oncolytic viruses for cancer treatment necessitates introduction of various genetic modifications to the viral genome, thereby restraining replication exclusively to tumor cells and eventually obtaining selective eradication of the tumor without side effects to healthy tissue. Furthermore, various modifications can be applied to the viral capsid in hope of gaining effective transduction of target tissue. In other words, the entry of viruses into tumor tissue can be augmented by allowing the virus to utilize non-native receptors for entry. Genetic capsid modifications may also help to avoid some major hurdles in systemic delivery that ultimately lead to the rapid clearance of the virus from the blood and virus induced toxicity. In addition to genetic modifications that alter the phenotype of the virus, some pharmacologic agents may be utilized to enhance the virus entry to target site. Liver kupffer cells (KC) are responsible for the majority of viral clearance after systemic viral delivery and they play a major role in adenovirus induced acute toxicity. The therapeutic window could possibly be widened by transiently depleting KCs, allowing smaller viral input doses and diminishing KC related toxicity. The transductional efficacy of various capsid modified viruses was analyzed in vitro and in vivo in murine orthotopic breast cancer model. The effect of capsid modifications on the oncolytic efficacy, i.e. the ability of the viruses to kill cancer cells, was evaluated in vitro and in vivo in murine cancer models. We concluded that capsid modifications result in transductional enhancement, and that enhanced transduction translates into more potent oncolysis in vitro and in vivo. When KC depleting agents were used in vivo prior to viral injections, enhanced tumor transduction was seen, but this effect was not translated into enhanced antitumor activity. Transcriptional regulation of replicative oncolytic viruses is a prerequisite for virotherapy. Tumor or tissue specific promoters can be used to control the transcription of adenoviral early genes to gain cancer specific viral replication. Specific deletions in viral regions essential for virus replication in normal cells can further increase the safety by allowing viral genome replication in cancer cells featuring specific mutations. Genetically modified viruses were shown to be able to kill putative cancer stem cells that are thought to be responsible for post treatment relapses and metastasis. Further, pharmacologic intervention reduced viral replication and thereby might offer an additional safety switch in case viral replication related side effects are encountered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the treatment of most cancers has improved steadily, only few metastatic solid tumors can be cured. Despite responses, refractory clones often emerge and the disease becomes refractory to available treatment modalities. Furthermore, resistance factors are shared between different treatment regimens and therefore loss of response typically occurs rapidly, and there is a tendency for cross-resistance between agents. Therefore, new agents with novel mechanisms of action and lacking cross-resistance to currently available approaches are needed. Modified oncolytic adenoviruses, featuring cancer-celective cell lysis and spread, constitute an interesting drug platform towards the goals of tumor specificity and the implementation of potent multimodal treatment regimens. In this work, we demonstrate the applicability of capsid-modified, transcriptionally targeted oncolytic adenoviruses in targeting gastric, pancreatic and breast cancer. A variety of capsid modified adenoviruses were tested for transductional specificity first in gastric and pancreatic cancer cells and patient tissues and then in mice. Then, oncolytic viruses featuring the same capsid modifications were tested to confirm that successful transductional targeting translates into enhanced oncolytic potential. Capsid modified oncolytic viruses also prolonged the survival of tumor bearing orthotopic models of gastric and pancreatic cancer. Taken together, oncolytic adenoviral gene therapy could be a potent drug for gastric and pancreatic cancer, and its specificity, potency and safety can be modulated by means of capsid modification. We also characterized a new intraperitoneal virus delivery method in benefit for the persistence of gene delivery to intraperitoneal gastric and pancreatic cancer tumors. With a silica implant a steady and sustained virus release to the vicinity of the tumor improved the survival of the orthotopic tumor bearing mice. Furthermore, silica gel-based virus delivery lowered the toxicity mediating proimflammatory cytokine response and production of total and anti-adenovirus neutralizing antibodies (NAbs). On the other hand, silica shielded the virus against pre-excisting NAbs, resulting in a more favourable biodistribution in the preimmunized mice. The silica implant might therefore be of interest in treating intraperitoneally disseminated disease. Cancer stem cells are thought to be resistant to conventional cancer drugs and might play an important role in cancer relapse and the formation of metastasis. Therefore, we examined if transcriptionally modified oncolytic adenoviruses are able to kill these cells. Complete eradication of CD44+CD24-/low putative breast cancer stem cells was seen in vitro, and significant antitumor activity was detected in CD44+CD24-/low –derived tumor bearing mice. Thus, genetically engineered oncolytic adenoviruses have potential in destroying cancer initiating cells, which may have relevance for the elimination of cancer stem cells in humans.