53 resultados para DIAGNOSTIC IMAGING

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone stress injuries of the foot have been known for more than 150 years. For a century, their primary diagnostic imaging tool has been radiography. However, currently the golden standard for establishing the diagnosis of stress injuries is magnetic resonance imaging (MRI). Although the injury type has been fairly well documented in the earlier literature, little information is available on the healing of stress injuries located in e.g. the talus and calcaneus. The current study retrospectively evaluated the stress injuries of the foot and ankle treated at the Central Military Hospital over a period of eight years in patients who underwent MRI for stress injury of the foot. The imaging studies of the patients were reevaluated to determine the exact nature of the stress injury. Moreover, the hospital records of the patients were reviewed to determine the healing of stress injuries of the talus and calcaneus. Patients with a stress fracture in the talus were recalled for a follow-up examination and MRI scan one to six years after the initial injury to determine if the fracture had completely healed, clinically and radiologically. The bone stress injuries of the foot were found to affect more than one bone in a majority of the cases. The talus and the calcaneus were the bones most commonly affected. In the talus, the most common site for the injuries was the head of the bone, and in the calcaneus, the posterior part of the bone. The injuries in these bones were associated with injuries in the surrounding bones. Stress injuries in the calcaneus seemed to heal well. No complications were seen in the primary healing process. The patients were, however, sometimes compelled to refrain from physical training for up to months. In the talus, minor degenerative findings of the articular surface were seen in half of the patients who participated in a follow-up MRI scan and radiographs taken one to six years after the initial injury. Half of the patients also reported minor exercise related symptoms in the follow-up. The symptoms were, however, not noticeable in everyday life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Välikorvaleikkauksiin usein liittyvän välikorvan ja kuuloluuketjun kirurgisen rekonstruktion tavoitteena on luoda olosuhteet, jotka mahdollistavat hyvän kuulon sekä välikorvan säilymisen tulehduksettomana ja ilmapitoisena. Välikorvan rekonstruktiossa on käytetty implanttimateriaaleina perinteisesti potilaan omia kudoksia sekä tarvittaessa erilaisia hajoamattomia biomateriaaleja, mm. titaania ja silikonia. Ongelmana biomateriaalien käytössä voi olla bakteerien adherenssi eli tarttuminen vieraan materiaalin pintaan, mikä saattaa johtaa biofilmin muodostumiseen. Tämä voi aiheuttaa kroonisen, huonosti antibiootteihin reagoivan infektion kudoksessa, mikä usein käytännössä johtaa uusintaleikkaukseen ja implantin poistoon. Maitohappo- ja glykolihappopohjaiset biologisesti hajoavat polymeerit ovat olleet kliinisessä käytössä jo vuosikymmeniä. Niitä on käytetty erityisesti tukimateriaaleina mm. ortopediassa sekä kasvo- ja leukakirurgiassa. Niitä ei ole toistaiseksi käytetty välikorvakirurgiassa. Korvan kuvantamiseen käytetään ensisijaisesti tietokonetomografiaa (TT). TT-tutkimuksen ongelmana on potilaan altistuminen suhteellisen korkealle sädeannokselle, joka kasvaa kumulatiivisesti, jos kuvaus joudutaan toistamaan. Väitöskirjatyö selvittää uuden, aiemmin kliinisessä työssä rutiinisti lähinnä hampaiston ja kasvojen alueen kuvantamiseen käytetyn rajoitetun kartiokeila-TT:n soveltuvuutta korvan alueen kuvantamiseen. Väitöskirjan kahdessa ensimmäisessä osatyössä tutkittiin ja verrattiin kahden kroonisia ja postoperatiivisia korvainfektioita aiheuttavan bakteerin, Staphylococcus aureuksen ja Pseudomonas aeruginosan, in vitro adherenssia titaanin, silikonin ja kahden eri biohajoavan polymeerin (PLGA) pintaan. Lisäksi tutkittiin materiaalien albumiinipinnoituksen vaikutusta adherenssiin. Kolmannessa osatyössä tutkittiin eläinmallissa PLGA:n biokompatibiliteettia eli kudosyhteensopivuutta kokeellisessa välikorvakirurgiassa. Chinchillojen välikorviin istutettiin PLGA-materiaalia, eläimiä seurattiin, ja ne lopetettiin 6 kk:n kuluttua operaatiosta. Biokompatibiliteetin arviointi perustui kliinisiin havaintoihin sekä kudosnäytteisiin. Neljännessä osatyössä tutkittiin kartiokeila-TT:n soveltuvuutta korvan alueen kuvantamiseen vertaamalla sen tarkkuutta perinteisen spiraali-TT:n tarkkuuteen. Molemmilla laitteilla kuvattiin ohimo- eli temporaaliluita korvan alueen kliinisesti ja kirurgisesti tärkeiden rakenteiden kuvantumisen tarkkuuden arvioimiseksi. Viidennessä osatyössä arvioitiin myös operoitujen temporaaliluiden kuvantumista kartiokeila-TT:ssa. Bakteeritutkimuksissa PLGA-materiaalin pintaan tarttui keskimäärin korkeintaan saman verran tai vähemmän bakteereita kuin silikonin tai titaanin. Albumiinipinnoitus vähensi bakteeriadherenssia merkitsevästi kaikilla materiaaleilla. Eläinkokeiden perusteella PLGA todettiin hyvin siedetyksi välikorvassa. Korvakäytävissä tai välikorvissa ei todettu infektioita, tärykalvon perforaatioita tai materiaalin esiin työntymistä. Kudosnäytteissä näkyi lievää tulehdusreaktiota ja fibroosia implantin ympärillä. Temporaaliluutöissä rajoitettu kartiokeila-TT todettiin vähintään yhtä tarkaksi menetelmäksi kuin spiraali-TT välikorvan ja sisäkorvan rakenteiden kuvantamisessa, ja sen aiheuttama kertasäderasitus todettiin spiraali-TT:n vastaavaa huomattavasti vähäisemmäksi. Kartiokeila-TT soveltui hyvin välikorvaimplanttien ja postoperatiivisen korvan kuvantamiseen. Tulokset osoittavat, että PLGA on välikorvakirurgiaan soveltuva, turvallinen ja kudosyhteensopiva biomateriaali. Biomateriaalien pinnoittaminen albumiinilla vähentää merkittävästi bakteeriadherenssia niihin, mikä puoltaa pinnoituksen soveltamista implanttikirurgiassa. Kartiokeila-TT soveltuu korvan alueen kuvantamiseen. Sen tarkkuus kliinisesti tärkeiden rakenteiden osoittamisessa on vähintään yhtä hyvä ja sen potilaalle aiheuttama sädeannos pienempi kuin nykyisen korva-spiraali-TT:n. Tämä tekee menetelmästä spiraali-TT:aa potilasturvallisemman vaihtoehdon erityisesti, jos potilaan tilanne vaatii seurantaa ja useampia kuvauksia, ja jos halutaan kuvata rajoitettuja alueita uni- tai bilateraalisesti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute knee injury is a common event throughout life, and it is usually the result of a traffic accident, simple fall, or twisting injury. Over 90% of patients with acute knee injury undergo radiography. An overlooked fracture or delayed diagnosis can lead to poor patient outcome. The major aim of this thesis was retrospectively to study imaging of knee injury with a special focus on tibial plateau fractures in patients referred to a level-one trauma center. Multi-detector computed tomography (MDCT) findings of acute knee trauma were studied and compared to radiography, as well as whether non-contrast MDCT can detect cruciate ligaments with reasonable accuracy. The prevalence, type, and location of meniscal injuries in magnetic resonance imaging (MRI) were evaluated, particularly in order to assess the prevalence of unstable meniscal tears in acute knee trauma with tibial plateau fractures. The possibility to analyze with conventional MRI the signal appearance of menisci repaired with bioabsorbable arrows was also studied. The postoperative use of MDCT was studied in surgically treated tibial plateau fractures: to establish the frequency and indications of MDCT and to assess the common findings and their clinical impact in a level-one trauma hospital. This thesis focused on MDCT and MRI of knee injuries, and radiographs were analyzed when applica-ble. Radiography constitutes the basis for imaging acute knee injury, but MDCT can yield information beyond the capabilities of radiography. Especially in severely injured patients , sufficient radiographs are often difficult to obtain, and in those patients, radiography is unreliable to rule out fractures. MDCT detected intact cruciate ligaments with good specificity, accuracy, and negative predictive value, but the assessment of torn ligaments was unreliable. A total of 36% (14/39) patients with tibial plateau fracture had an unstable meniscal tear in MRI. When a meniscal tear is properly detected preoperatively, treatment can be combined with primary fracture fixation, thus avoiding another operation. The number of meniscal contusions was high. Awareness of the imaging features of this meniscal abnormality can help radiologists increase specificity by avoiding false-positive findings in meniscal tears. Postoperative menisci treated with bioabsorbable arrows showed no difference, among different signal intensities in MRI, among menisci between patients with operated or intact ACL. The highest incidence of menisci with an increased signal intensity extending to the meniscal surface was in patients whose surgery was within the previous 18 months. The results may indicate that a rather long time is necessary for menisci to heal completely after arrow repair. Whether the menisci with an increased signal intensity extending to the meniscal surface represent improper healing or re-tear, or whether this is just the earlier healing feature in the natural process remains unclear, and further prospective studies are needed to clarify this. Postoperative use of MDCT in tibial plateau fractures was rather infrequent even in this large trauma center, but when performed, it revealed clinically significant information, thus benefitting patients in regard to treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a study of the x-ray scattering properties of tissues and tumours of the breast. Clinical radiography is based on the absorption of the x-rays when passing right through the human body and gives information about the densities of the tissues. Besides being absorbed, x-rays may change their direction within the tissues due to elastic scattering or even to refraction. The phenomenon of scattering is a nuisance to radiography in general, and to mammography in particular, because it reduces the quality of the images. However, scattered x-rays bear very useful information about the structure of the tissues at the supra-molecular level. Some pathologies, like breast cancer, produce alterations to the structures of the tissues, being especially evident in collagen-rich tissues. On the other hand, the change of direction due to refraction of the x-rays on the tissue boundaries can be mapped. The diffraction enhanced imaging (DEI) technique uses a perfect crystal to convert the angular deviations of the x-rays into intensity variations, which can be recorded as images. This technique is of especial interest in the cases were the densities of the tissues are very similar (like in mammography) and the absorption images do not offer enough contrast. This thesis explores the structural differences existing in healthy and pathological collagen in breast tissue samples by the small-angle x-ray scattering (SAXS) technique and compares these differences with the morphological information found in the DEI images and the histo-pathology of the same samples. Several breast tissue samples were studied by SAXS technique in the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Scattering patterns of the different tissues of the breast were acquired and compared with the histology of the samples. The scattering signals from adipose tissue (fat), connective tissue (collagen) and necrotic tissue were identified. Moreover, a clear distinction could be done between the scattering signals from healthy collagen and from collagen from an invasive tumour. Scattering from collagen is very characteristic. It includes several scattering peaks and scattering features that carry information about the size and the spacing of the collagen fibrils in the tissues. It was found that the collagen fibrils in invaded tumours were thinner and had a d-spacing length 0,7% longer that fibrils from healthy tumours. The scattering signals from the breast tissues were compared with the histology by building colour-coded maps across the samples. They were also imaged with the DEI technique. There was a total agreement between the scattering maps, the morphological features seen in the images and the information of the histo- pathological examination. The thesis demonstrates that the x-ray scattering signal can be used to characterize tissues and that it carries important information about the pathological state of the breast tissues, thus showing the potential of the SAXS technique as a possible diagnostic tool for breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The occurrence of occupational chronic solvent encephalopathy (CSE) seems to decrease, but still every year reveals new cases. To prevent CSE and early retirement of solvent-exposed workers, actions should focus on early CSE detection and diagnosis. Identifying the work tasks and solvent exposure associated with high risk for CSE is crucial. Clinical and exposure data of all the 128 cases diagnosed with CSE as an occupational disease in Finland during 1995-2007 was collected from the patient records at the Finnish Institute of Occupational Health (FIOH) in Helsinki. The data on the number of exposed workers in Finland were gathered from the Finnish Job-exposure Matrix (FINJEM) and the number of employed from the national workforce survey. We analyzed the work tasks and solvent exposure of CSE patients and the findings in brain magnetic resonance imaging (MRI), quantitative electroencephalography (QEEG), and event-related potentials (ERP). The annual number of new cases diminished from 18 to 3, and the incidence of CSE decreased from 8.6 to 1.2 / million employed per year. The highest incidence of CSE was in workers with their main exposure to aromatic hydrocarbons; during 1995-2006 the incidence decreased from 1.2 to 0.3 / 1 000 exposed workers per year. The work tasks with the highest incidence of CSE were floor layers and lacquerers, wooden surface finishers, and industrial, metal, or car painters. Among 71 CSE patients, brain MRI revealed atrophy or white matter hyperintensities or both in 38% of the cases. Atrophy which was associated with duration of exposure was most frequently located in the cerebellum and in the frontal or parietal brain areas. QEEG in a group of 47 patients revealed increased power of the theta band in the frontal brain area. In a group of 86 patients, the P300 amplitude of auditory ERP was decreased, but at individual level, all the amplitude values were classified as normal. In 11 CSE patients and 13 age-matched controls, ERP elicited by a multimodal paradigm including an auditory, a visual detection, and a recognition memory task under single and dual-task conditions corroborated the decrease of auditory P300 amplitude in CSE patients in single-task condition. In dual-task conditions, the auditory P300 component was, more often in patients than in controls, unrecognizable. Due to the paucity and non-specificity of the findings, brain MRI serves mainly for differential diagnostics in CSE. QEEG and auditory P300 are insensitive at individual level and not useful in the clinical diagnostics of CSE. A multimodal ERP paradigm may, however, provide a more sensitive method to diagnose slight cognitive disturbances such as CSE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface properties of solid state pharmaceutics are of critical importance. Processing modifies the surfaces and effects surface roughness, which influences the performance of the final dosage form in many different levels. Surface roughness has an effect on, e.g., the properties of powders, tablet compression and tablet coating. The overall goal of this research was to understand the surface structures of pharmaceutical surfaces. In this context the specific purpose was to compare four different analysing techniques (optical microscopy, scanning electron microscopy, laser profilometry and atomic force microscopy) in various pharmaceutical applications where the surfaces have quite different roughness scale. This was done by comparing the image and roughness analysing techniques using powder compacts, coated tablets and crystal surfaces as model surfaces. It was found that optical microscopy was still a very efficient technique, as it yielded information that SEM and AFM imaging are not able to provide. Roughness measurements complemented the image data and gave quantitative information about height differences. AFM roughness data represents the roughness of only a small part of the surface and therefore needs other methods like laser profilometer are needed to provide a larger scale description of the surface. The new developed roughness analysing method visualised surface roughness by giving detailed roughness maps, which showed local variations in surface roughness values. The method was able to provide a picture of the surface heterogeneity and the scale of the roughness. In the coating study, the laser profilometer results showed that the increase in surface roughness was largest during the first 30 minutes of coating when the surface was not yet fully covered with coating. The SEM images and the dispersive X-ray analysis results showed that the surface was fully covered with coating within 15 to 30 minutes. The combination of the different measurement techniques made it possible to follow the change of surface roughness and development of polymer coating. The optical imaging techniques gave a good overview of processes affecting the whole crystal surface, but they lacked the resolution to see small nanometer scale processes. AFM was used to visualize the nanoscale effects of cleaving and reveal the full surface heterogeneity, which underlies the optical imaging. Ethanol washing changed small (nanoscale) structure to some extent, but the effect of ethanol washing on the larger scale was small. Water washing caused total reformation of the surface structure at all levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intact function of working memory (WM) is essential for children and adults to cope with every day life. Children with deficits in WM mechanisms have learning difficulties that are often accompanied by behavioral problems. The neural processes subserving WM, and brain structures underlying this system, continue to develop during childhood till adolescence and young adulthood. With functional magnetic resonance imaging (fMRI) it is possible to investigate the organization and development of WM. The present thesis aimed to investigate, using behavioral and neuroimaging methods, whether mnemonic processing of spatial and nonspatial visual information is segregated in the developing and mature human brain. A further aim in this research was to investigate the organization and development of audiospatial and visuospatial information processing in WM. The behavioral results showed that spatial and nonspatial visual WM processing is segregated in the adult brain. The fMRI result in children suggested that memory load related processing of spatial and nonspatial visual information engages common cortical networks, whereas selective attention to either type of stimuli recruits partially segregated areas in the frontal, parietal and occipital cortices. Deactivation mechanisms that are important in the performance of WM tasks in adults are already operational in healthy school-aged children. Electrophysiological evidence suggested segregated mnemonic processing of visual and auditory location information. The results of the development of audiospatial and visuospatial WM demonstrate that WM performance improves with age, suggesting functional maturation of underlying cognitive processes and brain areas. The development of the performance of spatial WM tasks follows a different time course in boys and girls indicating a larger degree of immaturity in the male than female WM systems. Furthermore, the differences in mastering auditory and visual WM tasks may indicate that visual WM reaches functional maturity earlier than the corresponding auditory system. Spatial WM deficits may underlie some learning difficulties and behavioral problems related to impulsivity, difficulties in concentration, and hyperactivity. Alternatively, anxiety or depressive symptoms may affect WM function and the ability to concentrate, being thus the primary cause of poor academic achievement in children.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia. CADASIL is a systemic disease of small and medium-sized arteries although the symptoms are almost exclusively neurological, including migraineous headache, recurrent ischemic episodes, cognitive impairment and, finally, subcortical dementia. CADASIL is caused by over 170 different mutations in the NOTCH3 gene, which encodes a receptor expressed in adults predominantly in the vascular smooth muscle cells. The function of NOTCH3 is not crucial for embryonic development but is needed after birth. NOTCH3 directs postnatal arterial maturation and helps to maintain arterial integrity. It is involved in regulation of vascular tone and in the wound healing of a vascular injury. In addition, NOTCH3 promotes cell survival by inducing expression of anti-apoptotic proteins. NOTCH3 is a membrane-spanning protein with a large extracellular domain (N3ECD) containing 34 epidermal growth factor-like (EGF) repeats and a smaller intracellular domain with six ankyrin repeats. All CADASIL mutations are located in the EGF repeats and the majority of the mutations cause gain or loss of one cysteine residue in one of these repeats leading to an odd number of cysteine residues, which in turn leads to misfolding of N3ECD. This misfolding most likely alters the maturation, targetting, degradation and/or function of the NOTCH3 receptor. CADASIL mutations do not seem to affect the canonical NOTCH3 signalling pathway. The main pathological findings are the accumulation of the NOTCH3 extracellular domain on degenerating vascular smooth muscle cells (VSMCs), accumulation of granular osmiophilic material (GOM) in the close vicinity of VSMCs as well as fibrosis and thickening of arterial walls. Narrowing of the arterial lumen and local thrombosis cause insufficient blood flow, mainly in small arteries of the cerebral white matter, resulting in tissue damage and lacunar infarcts. CADASIL is suspected in patients with a suggestive family history and clinical picture as well as characteristic white matter alterations in magnetic resonance imaging. A definitive verification of the diagnosis can be achieved by identifying a pathogenic mutation in the NOTCH3 gene or through the detection of GOM by electron microscopy. To understand the pathology underlying CADASIL, we have generated a unique set of cultured vascular smooth muscle cell (VSMC) lines from umbilical cord, placental, systemic and cerebral arteries of CADASIL patients and controls. Analyses of these VSMCs suggest that mutated NOTCH3 is misfolded, thus causing endoplasmic reticulum stress, activation of the unfolded protein response and increased production of reactive oxygen species. In addition, mutation in NOTCH3 causes alterations in actin cytoskeletal structures and protein expression, increased branching and abnormal node formation. These changes correlate with NOTCH3 expression levels within different VSMCs lines, suggesting that the phenotypic differences of SMCs may affect the vulnerability of the VSMCs and, therefore, the pathogenic impact of mutated NOTCH3 appears to vary in the arteries of different locations. Furthermore, we identified PDGFR- as an immediate downstream target gene of NOTCH3 signalling. Activation of NOTCH induces up-regulation of the PDGFR- expression in control VSMCs, whereas this up-regulation is impaired in CADASIL VSMCs and might thus serve as an alternative molecular mechanism that contributes to CADASIL pathology. In addition, we have established the congruence between NOTCH3 mutations and electron microscopic detection of GOM with a view to constructing a strategy for CADASIL diagnostics. In cases where the genetic analysis is not available or the mutation is difficult to identify, a skin biopsy is an easy-to-perform and highly reliable diagnostic method. Importantly, it is invaluable in setting guidelines concerning how far one should proceed with the genetic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.