7 resultados para DEFECTS
em Helda - Digital Repository of University of Helsinki
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Defects in tricarboxylic acid cycle enzymes Fumarate hydratase and Succinate dehydrogenase in cancer
Resumo:
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a recently characterized cancer syndrome which predisposes to cutaneous and uterine leiomyomas as well as renal cell carcinoma (RCC). Uterine leiomyosarcoma (ULMS) has also been observed in certain Finnish HLRCC families. The predisposing gene for this syndrome, fumarate hydratase (FH), was identified in 2002. The well-known function of FH is in the tricarboxylic acid cycle (TCAC) in the energy metabolism of cells. As FH is a novel cancer gene, the role of FH mutations in tumours is in general unknown. Similarly, the mechanisms through which defective FH is associated with tumourigenesis are unclear. The loss of a wild type allele has been observed in virtually all HLRCC patients tumours and the FH enzyme activities are either totally lost or remarkably reduced in the tissues of mutation carrier patients. Therefore, FH is assumed to function as a tumour suppressor. Mutations in genes encoding subunits of other TCAC enzyme SDH have also been reported recently in tumours: mutations in SDHB, SDHC, and SDHD genes predispose to paraganglioma and pheochromocytoma. In the present study, mutations in the SDHB gene were observed to predispose to RCC. This was the first time that mutations in SDHB have been detected in extra-paraganglial tumours. Two different SDHB mutations were observed in two unrelated families. In the first family, the index patient was diagnosed with RCC at the age of 24 years. Additionally, his mother with a paraganglioma (PGL) of the heart and his maternal uncle with lung cancer were both carriers of the mutation. The RCC of the index patient and the PGL of his mother showed LOH. In the other family, an SDHB mutation was detected in two siblings who were both diagnosed with RCC at the ages of 24 and 26 years. Both of the siblings also suffered PGL. All these tumours showed LOH. Therefore, we concluded that mutations in SDHB predispose also for RCC in certain families. Several tumour types were analysed for FH mutations to define the role of FH mutations in these tumour types. In addition, patients with a putative cancer phenotype were analysed to identify new HLRCC families. Three FH variants were detected, of which two were novel. One of the variants was observed in a patient diagnosed with ULMS at the age of 41 years. However, LOH was not detected in the tumour tissue. The FH enzyme activity of the mutated protein was clearly reduced, being 43% of the activity of the normal protein. Together with the results from an earlier study we calculated that the prevalence of FH mutations in Finnish non-syndromic ULMS is around 2.4%. Therefore, FH mutations seem to have a minor role in the pathogenesis on non-syndromic ULMS. Two other germline variants were detected in a novel tumour type, ovarian mucinous cystadenoma. However, tumour tissues of the patients were not available for LOH studies and therefore LOH status remained unclear. Therefore, it is possible that FH mutations predispose also for ovarian tumours but further studies are needed to verify this result. A novel variant form of the FH gene (FHv) was identified and characterized in more detail. FHv contains an alternative first exon (1b), which appeared to function as 5 UTR sequence. The translation of FHv is initiated in vitro from exons two and three. The localization of FHv is both cytosolic and nuclear, in contrast to the localization of FH in mitochondria. FHv is expressed at low levels in all human tissues. Interestingly, the expression was induced after heat shock treatment and in chronic hypoxia. Therefore, FHv might have a role e.g. in the adaptation to unfavourable growth conditions. However, this remains to be elucidated.
Resumo:
The risk is obvious for soft tissue complications after operative treatment of the Achilles tendon, calcaneal bone or after ankle arthroplasty. Such complications after malleolar fractures are, however, seldom seen. The reason behind these complications is that the soft tissue in this region is tight and does not allow much tension to the wound area after surgery. Furthermore the area of operation may be damaged by swelling after the injury, or can be affected by peripheral vascular disease. While complications in this area are unavoidable, they can be diminished. This study attempts to highlight the possible predisposing factors leading to complications in these operations and on the other hand, to determine the solutions to solve soft tissue problems in this region. The study consists of five papers. The first article is a reprint on the soft tissue reconstruction of 25 patients after their complicated Achilles tendon surgeries were analysed. The second study reviews a series of 126 patients after having undergone an operative treatment of calcaneal bone fractures and analyses the complications and possible reasons behind them. The third part analyses a series of corrections of 35 soft tissue complications after calcaneal fracture operations. The fourth part reviews a series of 7 patients who had undergone complicated ankle arthroplasties. The last article presents a series of post operative lateral defects of the ankle treated with a less frequently used distally based peroneus brevis muscle flap and analyses the results. What can be conducted from these studies is that in general, the results after the correction of even severe soft tissue complications in the ankle region are good. For the small defects around the Achilles tendon, the local flaps are useful, but the larger defects are best treated with a free flap. We found that a long delay from trauma to surgery and a long operating time were predisposing factors that lead to soft tissue complications after operatively treated calcaneal bone fractures. The more severe the injury, the greater the risk for wound complication. Surprisingly, the long-term results after infected calcaneal osteosyntheses were acceptable and the calcaneal bone seems to tolerate chronic infections very well if the soft tissue is reconstructed successfully. Behind the complicated ankle arthroplasties, unexpectedly high number of cases experiencing arteriosclerosis of the lower extremity was found. These complications lead to ankle fusion but can be solved with a free flap if the vascularity is intact or can be reconstructed. For this reason a vascular examination of the lower extremity arteries of the patients going to ankle arthroplasty is strongly recommended. Moreover postoperative lateral malleolar wound infections which typically create lateral ankle defects can successfully be treated with a peroneus brevis muscle flap covered with a free skin graft.
Resumo:
The systemic autoinflammatory disorders are a group of rare diseases characterized by periodically recurring episodes of acute inflammation and a rise in serum acute phase proteins, but with no signs of autoimmunity. At present eight hereditary syndromes are categorized as autoinflammatory, although the definition has also occasionally been extended to other inflammatory disorders, such as Crohn s disease. One of the autoinflammatory disorders is the autosomally dominantly inherited tumour necrosis factor receptor-associated periodic syndrome (TRAPS), which is caused by mutations in the gene encoding the tumour necrosis factor type 1 receptor (TNFRSF1A). In patients of Nordic descent, cases of TRAPS and of three other hereditary fevers, hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), chronic infantile neurologic, cutaneous and articular syndrome (CINCA) and familial cold autoinflammatory syndrome (FCAS), have been reported, TRAPS being the most common of the four. Clinical characteristics of TRAPS are recurrent attacks of high spiking fever, associated with inflammation of serosal membranes and joints, myalgia, migratory rash and conjunctivitis or periorbital cellulitis. Systemic AA amyloidosis may occur as a sequel of the systemic inflammation. The aim of this study was to investigate the genetic background of hereditary periodically occurring fever syndromes in Finnish patients, to explore the reliability of determining serum concentrations of soluble TNFRSF1A and metalloproteinase-induced TNFRSF1A shedding as helpful tools in differential diagnostics, as well as to study intracellular NF-κB signalling in an attempt to widen the knowledge of the pathomechanisms underlying TRAPS. Genomic sequencing revealed two novel TNFRSF1A mutations, F112I and C73R, in two Finnish families. F112I was the first TNFRSF1A mutation to be reported in the third extracellular cysteine-rich domain of the gene and C73R was the third novel mutation to be reported in a Finnish family, with only one other TNFRSF1A mutation having been reported in the Nordic countries. We also presented a differential diagnostic problem in a TRAPS patient, emphasizing for the clinician the importance of differential diagnostic vigiliance in dealing with rare hereditary disorders. The underlying genetic disease of the patient both served as a misleading factor, which possibly postponed arrival at the correct diagnosis, but may also have predisposed to the pathologic condition, which led to a critical state of the patient. Using a method of flow cytometric analysis modified for the use on fresh whole blood, we studied intracellular signalling pathways in three Finnish TRAPS families with the F112I, C73R and the previously reported C88Y mutations. Evaluation of TNF-induced phosphorylation of NF-κB and p38, revealed low phosphorylation profiles in nine out of ten TRAPS patients in comparison to healthy control subjects. This study shows that TRAPS is a diagnostic possibility in patients of Nordic descent, with symptoms of periodically recurring fever and inflammation of the serosa and joints. In particular in the case of a family history of febrile episodes, the possibility of TRAPS should be considered, if an etiology of autoimmune or infectious nature is excluded. The discovery of three different mutations in a population as small as the Finnish, reinforces the notion that the extracellular domain of TNFRSF1A is prone to be mutated at the entire stretch of its cysteine-rich domains and not only at a limited number of sites, suggesting the absence of a founder effect in TRAPS. This study also demonstrates the challenges of clinical work in differentiating the symptoms of rare genetic disorders from those of other pathologic conditions and presents the possibility of an autoinflammatory disorder as being the underlying cause of severe clinical complications. Furthermore, functional studies of fresh blood leukocytes show that TRAPS is often associated with a low NF-κB and p38 phosphorylation profile, although low phosphorylation levels are not a requirement for the development of TRAPS. The aberrant signalling would suggest that the hyperinflammatory phenotype of TRAPS is the result of compensatory NF-κB-mediated regulatory mechanisms triggered by a deficiency of the innate immune response.