3 resultados para Crystal optics.

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first observations of solar X-rays date back to late 1940 s. In order to observe solar X-rays the instruments have to be lifted above the Earth s atmosphere, since all high energy radiation from the space is almost totally attenuated by it. This is a good thing for all living creatures, but bad for X-ray astronomers. Detectors observing X-ray emission from space must be placed on-board satellites, which makes this particular discipline of astronomy technologically and operationally demanding, as well as very expensive. In this thesis, I have focused on detectors dedicated to observing solar X-rays in the energy range 1-20 keV. The purpose of these detectors was to measure solar X-rays simultaneously with another X-ray spectrometer measuring fluorescence X-ray emission from the Moon surface. The X-ray fluorescence emission is induced by the primary solar X-rays. If the elemental abundances on the Moon were to be determined with fluorescence analysis methods, the shape and intensity of the simultaneous solar X-ray spectrum must be known. The aim of this thesis is to describe the characterization and operation of our X-ray instruments on-board two Moon missions, SMART-1 and Chandrayaan-1. Also the independent solar science performance of these two almost similar X-ray spectrometers is described. These detectors have the following two features in common. Firstly, the primary detection element is made of a single crystal silicon diode. Secondly, the field of view is circular and very large. The data obtained from these detectors are spectra with a 16 second time resolution. Before launching an instrument into space, its performance must be characterized by ground calibrations. The basic operation of these detectors and their ground calibrations are described in detail. Two C-flares are analyzed as examples for introducing the spectral fitting process. The first flare analysis shows the fit of a single spectrum of the C1-flare obtained during the peak phase. The other analysis example shows how to derive the time evolution of fluxes, emission measures (EM) and temperatures through the whole single C4 flare with the time resolution of 16 s. The preparatory data analysis procedures are also introduced in detail. These are required in spectral fittings of the data. A new solar monitor design equipped with a concentrator optics and a moderate size of field of view is also introduced.