1 resultado para Crowns.

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strawberries (Fragaria sp.) are adapted to diverse environmental conditions from the tropics to about 70ºN, so different responses to environmental conditions can be found. Most genotypes of garden strawberry (F. x ananassa Duch.) and woodland strawberry (F. vesca L.) are short-day (SD) plants that are induced to flowering by photoperiods under a critical limit, but also various photoperiod x temperature interactions can be found. In addition, continuously flowering everbearing (EB) genotypes are found. In addition to flowering, axillary bud differentiation in strawberry is regulated by photoperiod. In SD conditions, axillary buds differentiate to rosette-like structures called "branch crowns", whereas in long-day conditions (LD) they form runners, branches with 2 long internodes followed by a daughter plant (leaf rosette). The number of crown branches determines the yield of the plant, since inflorescences are formed from the apical meristems of the crown. Although axillary bud differentiation is an important developmental process in strawberries, its environmental and hormonal regulation has not been characterized in detail. Moreover, the genetic mechanisms underlying axillary bud differentiation and regulation of flowering time in these species are almost completely unresolved. These topics have been studied in this thesis in order to enhance strawberry research, cultivation and breeding. The results showed that 8-12 SD cycles suppressed runner initiation from the axillary buds of the garden strawberry cv. Korona with the concomitant induction of crown branching, and 3 weeks of SD was sufficient for the induction of flowering in the main crown. Furthermore, a second SD treatment given a few weeks after the first SD period can be used to induce flowering in the primary branch crowns and to induce the formation of secondary branches. Thus, artificial SD treatments effectively stimulate crown branching, providing one means for the increase of cropping (yield) potential in strawberry. It was also shown by growth regulation applications, quantitave hormone analysis and gene expression analysis that gibberellin (GA) is one of the key signals involved in the photoperiod control of shoot differentiation. The results indicate that photoperiod controls GA activity specifically in axillary buds, thereby determining bud fate. It was further shown that chemical control of GA biosynthesis by prohexadione-calcium can be utilized to prevent excessive runner formation and induce crown branching in strawberry fields. Moreover, ProCa increased berry yield up to 50%, showing that it is an easier and more applicable alternative to artificial SD treatments for controlling strawberry crown development and yield. Finally, flowering gene pathways in Fragaria were explored by searching for homologs of 118 Arabidopsis thaliana flowering-time genes. In total, 66 gene homologs were identified, and they distributed to all known flowering pathways, suggesting the presence of these pathways also in strawberry. Expression analysis of selected genes revealed that the mRNA of putative floral identity gene APETALA1 accumulated in the shoot apex of the EB genotype after the induction of flowering, whereas it was absent in vegetative SD genotype, indicating the usefulness of this gene product as the marker of floral initiation. The present data enables the further exploration of strawberry flowering pathways with genetic transformation, gene mapping and transcriptomics methods.