2 resultados para Critical Trends Assessment Program.

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was the assessment about the structure and use of the conceptual model of occlusion in operational weather forecasting. In the beginning a survey has been made about the conceptual model of occlusion as introduced to operational forecasters in the Finnish Meteorological Institute (FMI). In the same context an overview has been performed about the use of the conceptual model in modern operational weather forecasting, especially in connection with the widespread use of numerical forecasts. In order to evaluate the features of the occlusions in operational weather forecasting, all the occlusion processes occurring during year 2003 over Europe and Northern Atlantic area have been investigated using the conceptual model of occlusion and the methods suggested in the FMI. The investigation has yielded a classification of the occluded cyclones on the basis of the extent the conceptual model has fitted the description of the observed thermal structure. The seasonal and geographical distribution of the classes has been inspected. Some relevant cases belonging to different classes have been collected and analyzed in detail: in this deeper investigation tools and techniques, which are not routinely used in operational weather forecasting, have been adopted. Both the statistical investigation of the occluded cyclones during year 2003 and the case studies have revealed that the traditional classification of the types of the occlusion on the basis of the thermal structure doesn t take into account the bigger variety of occlusion structures which can be observed. Moreover the conceptual model of occlusion has turned out to be often inadequate in describing well developed cyclones. A deep and constructive revision of the conceptual model of occlusion is therefore suggested in light of the result obtained in this work. The revision should take into account both the progresses which are being made in building a theoretical footing for the occlusion process and the recent tools and meteorological quantities which are nowadays available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The indigenous cloud forests in the Taita Hills have suffered substantial degradation for several centuries due to agricultural expansion. Currently, only 1% of the original forested area remains preserved in this region. Furthermore, climate change imposes an imminent threat for local economy and environmental sustainability. In such circumstances, elaborating tools to conciliate socioeconomic growth and natural resources conservation is an enormous challenge. This dissertation tackles essential aspects for understanding the ongoing agricultural activities in the Taita Hills and their potential environmental consequences in the future. Initially, alternative methods were designed to improve our understanding of the ongoing agricultural activities. Namely, methods for agricultural survey planning and to estimate evapotranspiration were evaluated, taking into account a number of limitations regarding data and resources availability. Next, this dissertation evaluates how upcoming agricultural expansion, together with climate change, will affect the natural resources in the Taita Hills up to the year 2030. The driving forces of agricultural expansion in the region were identified as aiming to delineate future landscape scenarios and evaluate potential impacts from the soil and water conservation point of view. In order to investigate these issues and answer the research questions, this dissertation combined state of the art modelling tools with renowned statistical methods. The results indicate that, if current trends persist, agricultural areas will occupy roughly 60% of the study area by 2030. Although the simulated land use changes will certainly increase soil erosion figures, new croplands are likely to come up predominantly in the lowlands, which comprise areas with lower soil erosion potential. By 2030, rainfall erosivity is likely to increase during April and November due to climate change. Finally, this thesis addressed the potential impacts of agricultural expansion and climate changes on Irrigation Water Requirements (IWR), which is considered another major issue in the context of the relations between land use and climate. Although the simulations indicate that climate change will likely increase annual volumes of rainfall during the following decades, IWR will continue to increase due to agricultural expansion. By 2030, new cropland areas may cause an increase of approximately 40% in the annual volume of water necessary for irrigation.