6 resultados para Corona discharge

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is focused on the development and evaluation of ion mobility instrumentation with various atmospheric pressure ionization techniques and includes the following work. First, a high-resolution drift tube ion mobility spectrometer (IMS), coupled with a commercial triple quadrupole mass spectrometer (MS), was developed. This drift tube IMS is compatible with the front-end of commercial Sciex mass spectrometers (e.g., Sciex API-300, 365, and 3000) and also allows easy (only minor modifications are needed) installation between the original atmospheric pressure ion source and the triple quadrupole mass spectrometer. Performance haracteristics (e.g.,resolving power, detection limit, transmission efficiency of ions) of this IMS-MS instrument were evaluated. Development of the IMS-MS instrument also led to a study where a proposal was made that tetraalkylammonium ions can be used as chemical standards for ESI-IMS. Second, the same drift tube design was also used to build a standalone ion mobility spectrometer equipped with a Faraday plate detector. For this highresolution (resolving power about 100 shown) IMS device, a multi-ion source platform was built, which allows the use of a range of atmospheric pressure ionization methods, such as: corona discharge chemical ionization (CD-APCI), atmospheric pressure photoionization (APPI), and radioactive atmospheric pressure chemical ionization (R-APCI). The multi-ion source platform provides easy switching between ionization methods and both positive and negative ionization modes can be used. Third, a simple desorpion/ionization on silicon (DIOS) ion source set-up for use with the developed IMS and IMS-MS instruments was built and its operation demonstrated. Fourth, a prototype of a commercial aspiration-type ion mobility spectrometer was mounted in front of a commercial triple quadrupole mass spectrometer. The set-up, which is simple, easy to install, and requires no major modifications to the MS, provides the possibility of gathering fundamental information about aspiration mobility spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main obstacle for the application of high quality diamond-like carbon (DLC) coatings has been the lack of adhesion to the substrate as the coating thickness is increased. The aim of this study was to improve the filtered pulsed arc discharge (FPAD) method. With this method it is possible to achieve high DLC coating thicknesses necessary for practical applications. The energy of the carbon ions was measured with an optoelectronic time-of-flight method. An in situ cathode polishing system used for stabilizing the process yield and the carbon ion energies is presented. Simultaneously the quality of the coatings can be controlled. To optimise the quality of the deposition process a simple, fast and inexpensive method using silicon wafers as test substrates was developed. This method was used for evaluating the suitability of a simplified arc-discharge set-up for the deposition of the adhesion layer of DLC coatings. A whole new group of materials discovered by our research group, the diamond-like carbon polymer hybrid (DLC-p-h) coatings, is also presented. The parent polymers used in these novel coatings were polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE). The energy of the plasma ions was found to increase when the anode-cathode distance and the arc voltage were increased. A constant deposition rate for continuous coating runs was obtained with an in situ cathode polishing system. The novel DLC-p-h coatings were found to be water and oil repellent and harder than any polymers. The lowest sliding angle ever measured from a solid surface, 0.15 ± 0.03°, was measured on a DLC-PDMS-h coating. In the FPAD system carbon ions can be accelerated to high energies (≈ 1 keV) necessary for the optimal adhesion (the substrate is broken in the adhesion and quality test) of ultra thick (up to 200 µm) DLC coatings by increasing the anode-cathode distance and using high voltages (up to 4 kV). An excellent adhesion can also be obtained with the simplified arc-discharge device. To maintain high process yield (5µm/h over a surface area of 150 cm2) and to stabilize the carbon ion energies and the high quality (sp3 fraction up to 85%) of the resulting coating, an in situ cathode polishing system must be used. DLC-PDMS-h coating is the superior candidate coating material for anti-soiling applications where also hardness is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis acceleration of energetic particles at collisionless shock waves in space plasmas is studied using numerical simulations, with an emphasis on physical conditions applicable to the solar corona. The thesis consists of four research articles and an introductory part that summarises the main findings reached in the articles and discusses them with respect to theory of diffusive shock acceleration and observations. This thesis gives a brief review of observational properties of solar energetic particles and discusses a few open questions that are currently under active research. For example, in a few large gradual solar energetic particle events the heavy ion abundance ratios and average charge states show characteristics at high energies that are typically associated with flare-accelerated particles, i.e. impulsive events. The role of flare-accelerated particles in these and other gradual events has been discussed a lot in the scientific community, and it has been questioned if and how the observed features can be explained in terms of diffusive shock acceleration at shock waves driven by coronal mass ejections. The most extreme solar energetic particle events are the so-called ground level enhancements where particle receive so high energies that they can penetrate all the way through Earth's atmosphere and increase radiation levels at the surface. It is not known what conditions are required for acceleration into GeV/nuc energies, and the presence of both very fast coronal mass ejections and X-class solar flares makes it difficult to determine what is the role of these two accelerators in ground level enhancements. The theory of diffusive shock acceleration is reviewed and its predictions discussed with respect to the observed particle characteristics. We discuss how shock waves can be modeled and describe in detail the numerical model developed by the author. The main part of this thesis consists of the four scientific articles that are based on results of the numerical shock acceleration model developed by the author. The novel feature of this model is that it can handle complex magnetic geometries which are found, for example, near active regions in the solar corona. We show that, according to our simulations, diffusive shock acceleration can explain the observed variations in abundance ratios and average charge states, provided that suitable seed particles and magnetic geometry are available for the acceleration process in the solar corona. We also derive an injection threshold for diffusive shock acceleration that agrees with our simulation results very well, and which is valid under weakly turbulent conditions. Finally, we show that diffusive shock acceleration can produce GeV/nuc energies under suitable coronal conditions, which include the presence of energetic seed particles, a favourable magnetic geometry, and an enhanced level of ambient turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Talvivirtaamien redukointi vesistömallien avulla