6 resultados para Cold-formed Steel structures

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

From Steely Nation-State Superman to Conciliator of Economical Global Empire – A Psychohistory of Finnish Police Culture 1930-1997 My study concerns the way police culture has changed within the societal changes in Finnish society between 1930 and 1997. The method of my study was psycho-historical and post-structural analysis. The research was conducted by examining the psycho-historical plateaus traceable within Finnish police culture. I made a social diagnosis of the autopoietic relationship between the power-holders of Finnish society and the police (at various levels of hierarchical organization). According to police researcher John P. Crank, police culture should be understood as the cognitive processes behind the actions of the police. Among these processes are the values, beliefs, rituals, customs and advice which standardize their work and the common sense of policemen. According to Crank, police culture is defined by a mindset which thinks, judges and acts according to its evaluations filtered by its own preliminary comprehension. Police culture consists of all the unsaid assumptions of being a policeman, the organizational structures of police, official policies, unofficial ways of behaviour, forms of arrest, procedures of practice and different kinds of training habits, attitudes towards suspects and citizens, and also possible corruption. Police culture channels its members’ feelings and emotions. Crank says that police culture can be seen in how policemen express their feelings. He advises police researchers to ask themselves how it feels to be a member of the police. Ethos has been described as a communal frame for thought that guides one’s actions. According to sociologist Martti Grönfors, the Finnish mentality of the Protestant ethic is accentuated among Finnish policemen. The concept of ethos expresses very well the self-made mentality as an ethical tension which prevails in police work between communal belonging and individual freedom of choice. However, it is significant that it is a matter of the quality of relationships, and that the relationship is always tied to the context of the cultural history of dealing with one’s anxiety. According to criminologist Clifford Shearing, the values of police culture act as subterranean processes of the maintenance of social power in society. Policemen have been called microcosmic mediators, or street corner politicians. Robert Reiner argues that at the level of self-comprehension, policemen disparage the dimension of politics in their work. Reiner points out that all relationships which hold a dimension of power are political. Police culture has also been called a canteen culture. This idea expresses the day-to-day basis of the mentality of taking care of business which policing produces as a necessity for dealing with everyday hardships. According to police researcher Timo Korander, this figurative expression embodies the nature of police culture as a crew culture which is partly hidden from police chiefs who are at a different level. This multitude of standpoints depicts the diversity of police cultures. According to Reiner, one should not see police culture as one monolithic whole; instead one should assess it as the interplay of individuals negotiating with their environment and societal power networks. The cases analyzed formed different plateaus of study. The first plateau was the so-called ‘Rovaniemi arson’ case in the summer of 1930. The second plateau consisted of the examinations of alleged police assaults towards the Communists during the Finnish Continuation War of 1941 to 1944 and the threats that societal change after the war posed to Finnish Society. The third plateau was thematic. Here I investigated how using force towards police clients has changed culturally from the 1930s to the 1980s. The fourth plateau concerned with the material produced by the Security Police detectives traced the interaction between Soviet KGB agents and Finnish politicians during the long 1970s. The fifth plateau of larger changes in Finnish police culture then occurred during the 1980s as an aftermath of the former decade. The last, sixth plateau of changing relationships between policing and the national logic of action can be seen in the murder of two policemen in the autumn of 1997. My study shows that police culture has transformed from a “stone cold” steely fixed identity towards a more relational identity that tries to solve problems by negotiating with clients instead of using excessive force. However, in this process of change there is a traceable paradox in Finnish policing and police culture. On the one hand, policemen have, at the practical level, constructed their policing identity by protecting their inner self in their organizational role at work against the projections of anger and fear in society. On the other hand, however, they have had to safeguard themselves at the emotional level against the predominance of this same organizational role. Because of this dilemma they must simultaneously construct both a distance from their own role as police officers and the role of the police itself. This makes the task of policing susceptible to the political pressures of society. In an era of globalization, and after the heyday of the welfare state, this can produce heightened challenges for Finnish police culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B. cereus is a gram-positive bacterium that possesses two different forms of life:the large, rod-shaped cells (ca. 0.002 mm by 0.004 mm) that are able to propagate and the small (0.001 mm), oval shaped spores. The spores can survive in almost any environment for up to centuries without nourishment or water. They are insensitive towards most agents that normally kill bacteria: heating up to several hours at 90 ºC, radiation, disinfectants and extreme alkaline (≥ pH 13) and acid (≤ pH 1) environment. The spores are highly hydrophobic and therefore make them tend to stick to all kinds of surfaces, steel, plastics and live cells. In favorable conditions the spores of B. cereus may germinate into vegetative cells capable of producing food poisoning toxins. The toxins can be heat-labile protein formed after ingestion of the contaminated food, inside the gastrointestinal tract (diarrhoeal toxins), or heat stable peptides formed in the food (emesis causing toxin, cereulide). Cereulide cannot be inactivated in foods by cooking or any other procedure applicable on food. Cereulide in consumed food causes serious illness in human, even fatalities. In this thesis, B. cereus strains originating from different kinds of foods and environments and 8 different countries were inspected for their capability of forming cereulide. Of the 1041 isolates from soil, animal feed, water, air, used bedding, grass, dung and equipment only 1.2 % were capable of producing cereulide, whereas of the 144 isolates originating from foods 24 % were cereulide producers. Cereulide was detected by two methods: by its toxicity towards mammalian cells (sperm assay) and by its peculiar chemical structure using liquid-chromatograph-mass spectrometry equipment. B. cereus is known as one of the most frequent bacteria occurring in food. Most foods contain more than one kind of B. cereus. When randomly selected 100 isolates of B. cereus from commercial infant foods (dry formulas) were tested, 11% of these produced cereulide. Considering a frequent content of 103 to 104 cfu (colony forming units) of B. cereus per gram of infant food formula (dry), it appears likely that most servings (200 ml, 30 g of the powder reconstituted with water) may contain cereulide producers. When a reconstituted infant formula was inoculated with >105 cfu of cereulide producing B. cereus per ml and left at room temperature, cereulide accumulated to food poisoning levels (> 0.1 mg of cereulide per serving) within 24 hours. Paradoxically, the amount of cereulide (per g of food) increased 10 to 50 fold when the food was diluted 4 - 15 fold with water. The amount of the produced cereulide strongly depended on the composition of the formula: most toxin was formed in formulas with cereals mixed with milk, and least toxin in formulas based on milk only. In spite of the aggressive cleaning practices executed by the modern dairy industry, certain genotypes of B. cereus appear to colonise the silos tanks. In this thesis four strategies to explain their survival of their spores in dairy silos were identified. First, high survival (log 15 min kill ≤ 1.5) in the hot alkaline (pH >13) wash liquid, used at the dairies for cleaning-in-place. Second, efficient adherence of the spores to stainless steel from cold water. Third, a cereulide producing group with spores characterized by slow germination in rich medium and well preserved viability when exposed to heating at 90 ºC. Fourth, spores capable of germinating at 8 ºC and possessing the psychrotolerance gene, cspA. There were indications that spores highly resistant to hot 1% sodium hydroxide may be effectively inactivated by hot 0.9% nitric acid. Eight out of the 14 dairy silo tank isolates possessing hot alkali resistant spores were capable of germinating and forming biofilm in whole milk, not previously reported for B. cereus. In this thesis it was shown that cereulide producing B. cereus was capable of inhibiting the growth of cereulide non-producing B. cereus occurring in the same food. This phenomenon, called antagonism, has long been known to exist between B. cereus and other microbial species, e.g. various species of Bacillus, gram-negative bacteria and plant pathogenic fungi. In this thesis intra-species antagonism of B. cereus was shown for the first time. This brother-killing did not depend on the cereulide molecule, also some of the cereulide non-producers were potent antagonists. Interestingly, the antagonistic clades were most frequently found in isolates from food implicated with human illness. The antagonistic property was therefore proposed in this thesis as a novel virulence factor that increases the human morbidity of the species B. cereus, in particular of the cereulide producers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the Soviet point of view the actual substance of Soviet-Finnish relations in the second half of 1950s clearly differed from the contemporary and later public image, based on friendship and confidence rhetoric. As the polarization between the right and the left became more underlined in Finland in the latter half of the 1950s, the criticism towards the Soviet Union became stronger, and the USSR feared that this development would have influence on Finnish foreign policy. From the Soviet point of view, the security commitments of FCMA-treaty needed additional guarantees through control of Finnish domestic politics and economic relations, especially during international crises. In relation to Scandinavia, Finland was, from the Soviet point of view, the model country of friendship or neutrality policy. The influence of the Second Berlin Crisis or the Soviet-Finnish Night Frost Crisis in 1958-1959 to Soviet policy towards Scandinavia needs to be observed from this point of view. The Soviet Union used Finland as a tool, in agreement with Finnish highest political leadership, for weakening of the NATO membership of Norway and Denmark, and for maintaining Swedish non-alliance. The Finnish interest to EFTA membership in the summer of 1959, at the same time with the Scandinavian countries, seems to have caused a panic reaction in the USSR, as the Soviets feared that these economic arrangements would reverse the political advantages the country had received in Finland after the Night Frost Crisis. Together with history of events, this study observes the interaction of practical interests and ideologies, both in individuals and in decision-making organizations. The necessary social and ideological reforms in the Soviet Union after 1956 had influence both on the legitimacy of the regime, and led to contradictions in the argumentation of Soviet foreign policy. This was observed both in the own camp as well as in the West. Also, in Finland a breakthrough took place in the late 1950's: as the so-called counter reaction lost to the K-line, "a special relationship" developed with the Soviet Union. As a consequence of the Night Frost Crisis the Soviet relationship became a factor decisively defining the limits of domestic politics in Finland, a part of Finnish domestic political argumentation. Understood from this basis, finlandization is not, even from the viewpoint of international relations, a special case, but a domestic political culture formed by the relationship between a dominant state, a superpower, and a subordinate state, Finland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New stars form in dense interstellar clouds of gas and dust called molecular clouds. The actual sites where the process of star formation takes place are the dense clumps and cores deeply embedded in molecular clouds. The details of the star formation process are complex and not completely understood. Thus, determining the physical and chemical properties of molecular cloud cores is necessary for a better understanding of how stars are formed. Some of the main features of the origin of low-mass stars, like the Sun, are already relatively well-known, though many details of the process are still under debate. The mechanism through which high-mass stars form, on the other hand, is poorly understood. Although it is likely that the formation of high-mass stars shares many properties similar to those of low-mass stars, the very first steps of the evolutionary sequence are unclear. Observational studies of star formation are carried out particularly at infrared, submillimetre, millimetre, and radio wavelengths. Much of our knowledge about the early stages of star formation in our Milky Way galaxy is obtained through molecular spectral line and dust continuum observations. The continuum emission of cold dust is one of the best tracers of the column density of molecular hydrogen, the main constituent of molecular clouds. Consequently, dust continuum observations provide a powerful tool to map large portions across molecular clouds, and to identify the dense star-forming sites within them. Molecular line observations, on the other hand, provide information on the gas kinematics and temperature. Together, these two observational tools provide an efficient way to study the dense interstellar gas and the associated dust that form new stars. The properties of highly obscured young stars can be further examined through radio continuum observations at centimetre wavelengths. For example, radio continuum emission carries useful information on conditions in the protostar+disk interaction region where protostellar jets are launched. In this PhD thesis, we study the physical and chemical properties of dense clumps and cores in both low- and high-mass star-forming regions. The sources are mainly studied in a statistical sense, but also in more detail. In this way, we are able to examine the general characteristics of the early stages of star formation, cloud properties on large scales (such as fragmentation), and some of the initial conditions of the collapse process that leads to the formation of a star. The studies presented in this thesis are mainly based on molecular line and dust continuum observations. These are combined with archival observations at infrared wavelengths in order to study the protostellar content of the cloud cores. In addition, centimetre radio continuum emission from young stellar objects (YSOs; i.e., protostars and pre-main sequence stars) is studied in this thesis to determine their evolutionary stages. The main results of this thesis are as follows: i) filamentary and sheet-like molecular cloud structures, such as infrared dark clouds (IRDCs), are likely to be caused by supersonic turbulence but their fragmentation at the scale of cores could be due to gravo-thermal instability; ii) the core evolution in the Orion B9 star-forming region appears to be dynamic and the role played by slow ambipolar diffusion in the formation and collapse of the cores may not be significant; iii) the study of the R CrA star-forming region suggests that the centimetre radio emission properties of a YSO are likely to change with its evolutionary stage; iv) the IRDC G304.74+01.32 contains candidate high-mass starless cores which may represent the very first steps of high-mass star and star cluster formation; v) SiO outflow signatures are seen in several high-mass star-forming regions which suggest that high-mass stars form in a similar way as their low-mass counterparts, i.e., via disk accretion. The results presented in this thesis provide constraints on the initial conditions and early stages of both low- and high-mass star formation. In particular, this thesis presents several observational results on the early stages of clustered star formation, which is the dominant mode of star formation in our Galaxy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance and lifetime and cause contamination and impaired quality of the industrial product. In this thesis we studied bacterial adherence to abiotic surfaces by using coupons of stainless steel coated or not coated with fluoropolymer or diamond like carbon (DLC). As model organisms we used bacterial isolates from paper machines (Meiothermus silvanus, Pseudoxanthomonas taiwanensis and Deinococcus geothermalis) and also well characterised species isolated from medical implants (Staphylococcus epidermidis). We found that coating of steel surface with these materials reduced its tendency towards biofouling: Fluoropolymer and DLC coatings repelled all four biofilm formers on steel. We found great differences between bacterial species in their preference of surfaces to adhere as well as their ultrastructural details, like number and thickness of adhesion organelles they expressed. These details responded differently towards the different surfaces they adhered to. We further found that biofilms of D. geothermalis formed on titanium dioxide coated coupons of glass, steel and titanium, were effectively removed by photocatalytic action in response to irradiation at 360 nm. However, on non-coated glass or steel surfaces irradiation had no detectable effect on the amount of bacterial biomass. We showed that the adhesion organelles of bacteria on illuminated TiO2 coated coupons were complety destroyed whereas on non-coated coupons they looked intact when observed by microscope. Stainless steel is the most widely used material for industrial process equipments and surfaces. The results in this thesis showed that stainless steel is prone to biofouling by phylogenetically distant bacterial species and that coating of the steel may offer a tool for reduced biofouling of industrial equipment. Photocatalysis, on the other hand, is a potential technique for biofilm removal from surfaces in locations where high level of hygiene is required. Our study of natural biofilms on barley kernel surfaces showed that also there the microbes possessed adhesion organelles visible with electronmicroscope both before and after steeping. The microbial community of dry barley kernels turned into a dense biofilm covered with slimy extracellular polymeric substance (EPS) in the kernels after steeping in water. Steeping is the first step in malting. We also presented evidence showing that certain strains of Lactobacillus plantarum and Wickerhamomyces anomalus, when used as starter cultures in the steeping water, could enter the barley kernel and colonise the tissues of the barley kernel. By use of a starter culture it was possible to reduce the extensive production of EPS, which resulted in a faster filtration of the mash.