16 resultados para Coherent beam combination
em Helda - Digital Repository of University of Helsinki
Resumo:
The interpretation of irony in this study is seen as being crucially dependent on the notion of coherence. Coherence depends on a complex interplay of contextual features, which is why all interpretations must be seen as socio-cultural processes. An utterance is perceived as coherent if it makes sense and if it hangs together. Incoherent utterances can result in an ironic interpretation; however, the incoherence must also be perceived as being intentional, and intentionality in turn is a sign of the ironist's rejecting stance. The study does not encompass the notion of irony of fate nor situational irony that is unintentional. Irony is defined in this study as a combination of five components. It is seen as (1) a negative attitude that reflects (2) the intention of the ironist, and (3) has a target and most often (4) a victim too. Essential to irony is its fifth component, the fact that one or more of these four components must be inferred from co- or context. The componential definition of irony is crucial in deciding whether an interpretation is ironic or not, and the definition makes it possible to discern the differences as well as the similarities between different kinds of irony. The method of the study is experimental: 12 Finnish newspaper texts that could be considered to be ironic were interpreted by 107 informants. The interpretation of one of the texts was based on unelicited feedback given by readers of a weekly magazine. The responses were analyzed to determine (a) whether the texts were perceived as being coherent or incoherent and (b) whether the informants appealed to any of the five components of irony. The results of the analyses of the informants' responses indicate that differences between the ironic and non-ironic interpretations of the texts can be explained in terms of whether or not the informant regarded the text as being coherent. The thesis also discusses the shortcomings of other accounts of irony: the Gricean theory of conversational implicature, speech act theory, irony as rhetoric, irony as pretense, irony as echoic mention, and irony as framing. In contrast to these other accounts, the study focuses on irony as a textual phenomenon and underlines the importance of socio-cultural context in the interpretation of irony. Key words: irony, coherence, incoherence, the componential definition of irony, interpretation of linguistic utterances.
Resumo:
This research examines three aspects of becoming a teacher, teacher identity formation in mathematics teacher education: the cognitive and affective aspect, the image of an ideal teacher directing the developmental process, and as an on-going process. The formation of emerging teacher identity was approached in a social psychological framework, in which individual development takes place in social interaction with the context through various experiences. Formation of teacher identity is seen as a dynamic, on-going developmental process, in which an individual intentionally aspires after the ideal image of being a teacher by developing his/her own competence as a teacher. The starting-point was that it is possible to examine formation of teacher identity through conceptualisation of observations that the individual and others have about teacher identity in different situations. The research uses the qualitative case study approach to formation of emerging teacher identity, the individual developmental process and the socially constructed image of an ideal mathematics teacher. Two student cases, John and Mary, and the collective case of teacher educators representing socially shared views of becoming and being a mathematics teacher are presented. The development of each student was examined based on three semi-structured interviews supplemented with written products. The data-gathering took place during the 2005 2006 academic year. The collective case about the ideal image provided during the programme was composed of separate case displays of each teacher educator, which were mainly based on semi-structured interviews in spring term 2006. The intentions and aims set for students were of special interest in the interviews with teacher educators. The interview data was analysed following the modified idea of analytic induction. The formation of teacher identity is elaborated through three themes emerging from theoretical considerations and the cases. First, the profile of one s present state as a teacher may be scrutinised through separate affective and cognitive aspects associated with the teaching profession. The differences between individuals arise through dif-ferent emphasis on these aspects. Similarly, the socially constructed image of an ideal teacher may be profiled through a combination of aspects associated with the teaching profession. Second, the ideal image directing the individual developmental process is the level at which individual and social processes meet. Third, formation of teacher identity is about becoming a teacher both in the eyes of the individual self as well as of others in the context. It is a challenge in academic mathematics teacher education to support the various cognitive and affective aspects associated with being a teacher in a way that being a professional and further development could have a coherent starting-point that an individual can internalise.
Resumo:
In dentistry, basic imaging techniques such as intraoral and panoramic radiography are in most cases the only imaging techniques required for the detection of pathology. Conventional intraoral radiographs provide images with sufficient information for most dental radiographic needs. Panoramic radiography produces a single image of both jaws, giving an excellent overview of oral hard tissues. Regardless of the technique, plain radiography has only a limited capability in the evaluation of three-dimensional (3D) relationships. Technological advances in radiological imaging have moved from two-dimensional (2D) projection radiography towards digital, 3D and interactive imaging applications. This has been achieved first by the use of conventional computed tomography (CT) and more recently by cone beam CT (CBCT). CBCT is a radiographic imaging method that allows accurate 3D imaging of hard tissues. CBCT has been used for dental and maxillofacial imaging for more than ten years and its availability and use are increasing continuously. However, at present, only best practice guidelines are available for its use, and the need for evidence-based guidelines on the use of CBCT in dentistry is widely recognized. We evaluated (i) retrospectively the use of CBCT in a dental practice, (ii) the accuracy and reproducibility of pre-implant linear measurements in CBCT and multislice CT (MSCT) in a cadaver study, (iii) prospectively the clinical reliability of CBCT as a preoperative imaging method for complicated impacted lower third molars, and (iv) the tissue and effective radiation doses and image quality of dental CBCT scanners in comparison with MSCT scanners in a phantom study. Using CBCT, subjective identification of anatomy and pathology relevant in dental practice can be readily achieved, but dental restorations may cause disturbing artefacts. CBCT examination offered additional radiographic information when compared with intraoral and panoramic radiographs. In terms of the accuracy and reliability of linear measurements in the posterior mandible, CBCT is comparable to MSCT. CBCT is a reliable means of determining the location of the inferior alveolar canal and its relationship to the roots of the lower third molar. CBCT scanners provided adequate image quality for dental and maxillofacial imaging while delivering considerably smaller effective doses to the patient than MSCT. The observed variations in patient dose and image quality emphasize the importance of optimizing the imaging parameters in both CBCT and MSCT.
Resumo:
Boron neutron capture therapy (BNCT) is a form of chemically targeted radiotherapy that utilises the high neutron capture cross-section of boron-10 isotope to achieve a preferential dose increase in the tumour. The BNCT dosimetry poses a special challenge as the radiation dose absorbed by the irradiated tissues consists of several dose different components. Dosimetry is important as the effect of the radiation on the tissue is correlated with the radiation dose. Consistent and reliable radiation dose delivery and dosimetry are thus basic requirements for radiotherapy. The international recommendations for are not directly applicable to BNCT dosimetry. The existing dosimetry guidance for BNCT provides recommendations but also calls for investigating for complementary methods for comparison and improved accuracy. In this thesis the quality assurance and stability measurements of the neutron beam monitors used in dose delivery are presented. The beam monitors were found not to be affected by the presence of a phantom in the beam and that the effect of the reactor core power distribution was less than 1%. The weekly stability test with activation detectors has been generally reproducible within the recommended tolerance value of 2%. An established toolkit for epithermal neutron beams for determination of the dose components is presented and applied in an international dosimetric intercomparison. The measured quantities (neutron flux, fast neutron and photon dose) by the groups in the intercomparison were generally in agreement within the stated uncertainties. However, the uncertainties were large, ranging from 3-30% (1 standard deviation), emphasising the importance of dosimetric intercomparisons if clinical data is to be compared between different centers. Measurements with the Exradin type 2M ionisation chamber have been repeated in the epithermal neutron beam in the same measurement configuration over the course of 10 years. The presented results exclude severe sensitivity changes to thermal neutrons that have been reported for this type of chamber. Microdosimetry and polymer gel dosimetry as complementary methods for epithermal neutron beam dosimetry are studied. For microdosimetry the comparison of results with ionisation chambers and computer simulation showed that the photon dose measured with microdosimetry was lower than with the two other methods. The disagreement was within the uncertainties. For neutron dose the simulation and microdosimetry results agreed within 10% while the ionisation chamber technique gave 10-30% lower neutron dose rates than the two other methods. The response of the BANG-3 gel was found to be linear for both photon and epithermal neutron beam irradiation. The dose distribution normalised to dose maximum measured by MAGIC polymer gel was found to agree well with the simulated result near the dose maximum while the spatial difference between measured and simulated 30% isodose line was more than 1 cm. In both the BANG-3 and MAGIC gel studies, the interpretation of the results was complicated by the presence of high-LET radiation.
Resumo:
Radiation therapy (RT) plays currently significant role in curative treatments of several cancers. External beam RT is carried out mostly by using megavoltage beams of linear accelerators. Tumor eradication and normal tissue complications correlate to dose absorbed in tissues. Normally this dependence is steep and it is crucial that actual dose within patient accurately correspond to the planned dose. All factors in a RT procedure contain uncertainties requiring strict quality assurance. From hospital physicist´s point of a view, technical quality control (QC), dose calculations and methods for verification of correct treatment location are the most important subjects. Most important factor in technical QC is the verification that radiation production of an accelerator, called output, is within narrow acceptable limits. The output measurements are carried out according to a locally chosen dosimetric QC program defining measurement time interval and action levels. Dose calculation algorithms need to be configured for the accelerators by using measured beam data. The uncertainty of such data sets limits for best achievable calculation accuracy. All these dosimetric measurements require good experience, are workful, take up resources needed for treatments and are prone to several random and systematic sources of errors. Appropriate verification of treatment location is more important in intensity modulated radiation therapy (IMRT) than in conventional RT. This is due to steep dose gradients produced within or close to healthy tissues locating only a few millimetres from the targeted volume. The thesis was concentrated in investigation of the quality of dosimetric measurements, the efficacy of dosimetric QC programs, the verification of measured beam data and the effect of positional errors on the dose received by the major salivary glands in head and neck IMRT. A method was developed for the estimation of the effect of the use of different dosimetric QC programs on the overall uncertainty of dose. Data were provided to facilitate the choice of a sufficient QC program. The method takes into account local output stability and reproducibility of the dosimetric QC measurements. A method based on the model fitting of the results of the QC measurements was proposed for the estimation of both of these factors. The reduction of random measurement errors and optimization of QC procedure were also investigated. A method and suggestions were presented for these purposes. The accuracy of beam data was evaluated in Finnish RT centres. Sufficient accuracy level was estimated for the beam data. A method based on the use of reference beam data was developed for the QC of beam data. Dosimetric and geometric accuracy requirements were evaluated for head and neck IMRT when function of the major salivary glands is intended to be spared. These criteria are based on the dose response obtained for the glands. Random measurement errors could be reduced enabling lowering of action levels and prolongation of measurement time interval from 1 month to even 6 months simultaneously maintaining dose accuracy. The combined effect of the proposed methods, suggestions and criteria was found to facilitate the avoidance of maximal dose errors of up to even about 8 %. In addition, their use may make the strictest recommended overall dose accuracy level of 3 % (1SD) achievable.
Resumo:
Diagnostic radiology represents the largest man-made contribution to population radiation doses in Europe. To be able to keep the diagnostic benefit versus radiation risk ratio as high as possible, it is important to understand the quantitative relationship between the patient radiation dose and the various factors which affect the dose, such as the scan parameters, scan mode, and patient size. Paediatric patients have a higher probability for late radiation effects, since longer life expectancy is combined with the higher radiation sensitivity of the developing organs. The experience with particular paediatric examinations may be very limited and paediatric acquisition protocols may not be optimised. The purpose of this thesis was to enhance and compare different dosimetric protocols, to promote the establishment of the paediatric diagnostic reference levels (DRLs), and to provide new data on patient doses for optimisation purposes in computed tomography (with new applications for dental imaging) and in paediatric radiography. Large variations in radiation exposure in paediatric skull, sinus, chest, pelvic and abdominal radiography examinations were discovered in patient dose surveys. There were variations between different hospitals and examination rooms, between different sized patients, and between imaging techniques; emphasising the need for harmonisation of the examination protocols. For computed tomography, a correction coefficient, which takes individual patient size into account in patient dosimetry, was created. The presented patient size correction method can be used for both adult and paediatric purposes. Dental cone beam CT scanners provided adequate image quality for dentomaxillofacial examinations while delivering considerably smaller effective doses to patient compared to the multi slice CT. However, large dose differences between cone beam CT scanners were not explained by differences in image quality, which indicated the lack of optimisation. For paediatric radiography, a graphical method was created for setting the diagnostic reference levels in chest examinations, and the DRLs were given as a function of patient projection thickness. Paediatric DRLs were also given for sinus radiography. The detailed information about the patient data, exposure parameters and procedures provided tools for reducing the patient doses in paediatric radiography. The mean tissue doses presented for paediatric radiography enabled future risk assessments to be done. The calculated effective doses can be used for comparing different diagnostic procedures, as well as for comparing the use of similar technologies and procedures in different hospitals and countries.
Resumo:
We combine searches by the CDF and D0 collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb-1 of p-pbar collisions at sqrt{s}=1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard-model Higgs boson in the mass range 162-166 GeV at the 95% C.L.
Resumo:
We show that the dynamical Wigner functions for noninteracting fermions and bosons can have complex singularity structures with a number of new solutions accompanying the usual mass-shell dispersion relations. These new shell solutions are shown to encode the information of the quantum coherence between particles and antiparticles, left and right moving chiral states and/or between different flavour states. Analogously to the usual derivation of the Boltzmann equation, we impose this extended phase space structure on the full interacting theory. This extension of the quasiparticle approximation gives rise to a self-consistent equation of motion for a density matrix that combines the quantum mechanical coherence evolution with a well defined collision integral giving rise to decoherence. Several applications of the method are given, for example to the coherent particle production, electroweak baryogenesis and study of decoherence and thermalization.
Resumo:
Abstract (Irony as object of research: Is it possible to explore what is between the lines?): The main concern of this article is the interpretation of irony: how is it brought about and how can it be investigated? The method applied is based on authentic texts and their elicited interpretations − a method referred to in this article response analysis. Interpretation of irony in the approach taken is seen as being crucially dependent on the notion of coherence. A text is perceived as being coherent if it (a) makes sense and if it(b) hangs together. Incoherent texts can result in an ironic interpretation; however, the incoherence must also be perceived as being intentional, and intentionality in turn is a sign of the edge of the ironist. Ironic interpretation is defined as a combination of five factors: (1) an ironic edge that (2) reflects the intention of the ironist, and (3) has a target and (4) a victim too. Essential to irony is its fifth factor, the fact that one or more of these four factors must be inferred from co(n)text. This definition of irony is crucial in distinguishing irony from non-irony, and it also helps to discern the differences as well as the similarities between irony and related phenomena.
Resumo:
We reformulate and extend our recently introduced quantum kinetic theory for interacting fermion and scalar fields. Our formalism is based on the coherent quasiparticle approximation (cQPA) where nonlocal coherence information is encoded in new spectral solutions at off-shell momenta. We derive explicit forms for the cQPA propagators in the homogeneous background and show that the collision integrals involving the new coherence propagators need to be resummed to all orders in gradient expansion. We perform this resummation and derive generalized momentum space Feynman rules including coherent propagators and modified vertex rules for a Yukawa interaction. As a result we are able to set up self-consistent quantum Boltzmann equations for both fermion and scalar fields. We present several examples of diagrammatic calculations and numerical applications including a simple toy model for coherent baryogenesis.