2 resultados para Coat colour
em Helda - Digital Repository of University of Helsinki
Resumo:
Plus-stranded (plus) RNA viruses multiply within a cellular environment as tightly integrated units and rely on the genetic information carried within their genomes for multiplication and, hence, persistence. The minimal genomes of plus RNA viruses are unable to encode the molecular machineries that are required for virus multiplication. This sets requisites for the virus, which must form compatible interactions with host components during multiplication to successfully utilize primary metabolites as building blocks or metabolic energy, and to divert the protein synthesis machinery for production of viral proteins. In fact, the emerging picture of a virus-infected cell displays tight integration with the virus, from simple host and virus protein interactions through to major changes in the physiological state of the host cell. This study set out to develop a method for the identification of host components, mainly host proteins, that interact with proteins of Potato virus A (PVA; Potyvirus) during infection. This goal was approached by developing affinity-tag based methods for the purification of viral proteins complexed with associated host proteins from infected plants. Using this method, host membrane-associated viral ribonucleoprotein (RNP) complexes were obtained, and several host and viral proteins could be identified as components of these complexes. One of the host proteins identified using this strategy was a member of the heat shock protein 70 (HSP70) family, and this protein was chosen for further analysis. To enable the analysis of viral gene expression, a second method was developed based on Agrobacterium-mediated virus genome delivery into plant cells, and detection of virally expressed Renilla luciferase (RLUC) as a quantitative measure of viral gene expression. Using this method, it was observed that down-regulation of HSP70 caused a PVA coat protein (CP)-mediated defect associated with replication. Further experimentation suggested that CP can inhibit viral gene expression and that a distinct translational activity coupled to replication, referred to as replication-associated translation (RAT), exists. Unlike translation of replication-deficient viral RNA, RAT was dependent on HSP70 and its co-chaperone CPIP. HSP70 and CPIP together regulated CP turnover by promoting its modification by ubiquitin. Based on these results, an HSP70 and CPIP-driven mechanism that functions to regulate CP during viral RNA replication and/or translation is proposed, possibly to prevent premature particle assembly caused by CP association with viral RNA.
Resumo:
Humic lakes are abundant in the temperate and cold regions of the Boreal Zone. High levels of water colour and strong thermal stratification of humic lakes limit the potential fish habitats and give a special role to the intraspecific and interspecific interactions. Water colour has different effects on species depending on species-specific life-history traits and trophic interactions. Fish species whose success in predation is based on visual cues are more susceptible to suffer in competition. The main aim of the thesis was to demonstrate the effects of water colour on European perch (Perca fluviatilis) in humic lakes. The contribution of water colour to diet, feeding, growth and competitive interactions of fish was studied both in laboratory and in small humic lakes with varying levels of water colour. The main findings of the thesis were that water colour has different effects on species, depending on species-specific life-history traits and trophic interactions. Water colour affected visually-oriented perch feeding and growth negatively, and the prolonged benthic feeding phase of perch resulting from the increased water colour could increase intraspecific competition in perch populations and may result in a partial bottleneck in growth for perch. Moreover, water colour may act as a proximate factor behind the population dependency of sexual growth dimorphism in perch.