38 resultados para Coastal plants
em Helda - Digital Repository of University of Helsinki
Resumo:
Colorectal cancer (CRC) is a major health concern and demands long-term efforts in developing strategies for screening and prevention. CRC has become a preventable disease as a consequence of a better understanding of colorectal carcinogenesis. However, current therapy is unsatisfactory and necessitates the exploration of other approaches for the prevention and treatment of cancer. Plant based products have been recognized as preventive with regard to the development of colon cancer. Therefore, the potential chemopreventive use and mechanism of action of Lebanese natural product were evaluated. Towards this aim the antitumor activity of Onopordum cynarocephalum and Centaurea ainetensis has been studied using in vitro and in vivo models. In vitro, both crude extracts were non cytotoxic to normal intestinal cells and inhibited the proliferation of colon cancer cells in a dose-dependent manner. In vivo, both crude extracts reduced the number of tumors by an average of 65% at weeks 20 (adenomas stage) and 30 (adenocarcinomas stage). The activity of the C. ainetensis extract was attributed to Salograviolide A, a guaianolide-type sesquiterpene lactone, which was isolated and identified through bio-guided fractionation. The mechanism of action of thymoquinone (TQ), the active component of Nigella sativa, was established in colon cancer cells using in vitro models. By the use of N-acetyl cysteine, a radical scavenger, the direct involvement of reactive oxygen species in TQ-induced apoptotic cells was established. The analytical detection of TQ from spiked serum and its protein binding were evaluated. The average recovery of TQ from spiked serum subjected to several extraction procedures was 2.5% proving the inability of conventional methods to analyze TQ from serum. This has been explained by the extensive binding (>98%) of TQ to serum and major serum components such as bovine serum albumin (BSA) and alpha-1-acid glycoprotein (AGP). Using mass spectrometry analysis, TQ was confirmed to bind covalently to the free cysteine in position 34 and 147 of the amino acid sequence of BSA and AGP, respectively. The results of this work put at the disposal for future development new plants with anti-cancer activities and enhance the understanding of the pharmaceutical properties of TQ, a prerequisite for its future clinical development.
Resumo:
There are several reasons for increasing the usage of forest biomass for energy in Finland. Apart from the fact that forest biomass is a CO2 -neutral energy source, it is also a domestic resource distributed throughout the country. Usage of forest biomass in the form of logging residues decreases Finland’s dependence of energy import and increases both incomes and employment. Wood chips are mainly made from logging residues, which constitute 64 % of the raw material. A large-scale use of forest biomass requires heed also to the potential negative aspects. Forest bioenergy is used extensively, but its impacts on the forests soil nutrition and carbon balance has not been studied much. Nor have there been many studies on the heavy metal or chlorine content of logging residues. The goal of this study was to examine the content of carbon, macronutrients, heavy metals and other for the combustion harmful substances in Scots pine and Norway spruce wood chips, and to estimate the effect of harvesting of logging residues on the forests carbon and nutrient balance. Another goal was to examine the energy content of the clear cut remains. The Wood chips for this study were gathered from pine and spruce dominated clear cut sites in southern Finland, in the costal forests between Hankoo and Siuntio. The number of sample locations were 29, and the average area was 3,15 ha and the average timber volume 212,6 m3 ha -1. The average logged timber volume was for Scots pine timber 70 m3 ha -1 and for Norway spruce timber 124 m3 ha -1 and for deciduous timber (birch and alder) 18,5 m3 ha -1. The proportion of spruce in the logging residues and the stand-volume were relevant for how much nutrients were taken from the forest ecosystem when harvesting logging residues. In this study it was noted that the nutrient content of the logging residues clearly increased when the percentage of spruce in the timber volume increased. The S, K, Na and Cl -contents in the logging residues in this study increased with an increasing percentage of spruce, which is probably due to the fact that the spruce is an effective collector of atmospheric dry-deposition. The amounts of nutrients that were lost when harvesting logging residues were less than those referred to in the literature. Within a circulation period (100 years), the forest soil gets substantially more nutrients from atmospheric deposition, litter fall and weathering than is lost through harvesting of logging residues after a clear cut. Harvesting of the logging residues makes for a relatively modest increase of the quantity of carbon that is removed from the forest compared to traditional forestry. Due to the fact that the clear cut remains in my study showed a high content of chlorine, there is a risk of corrosion in connection to the incineration of the logging residues in power plants especially at coastal areas/forests. The risk of sulphur -related corrosion is probably rather small, because S concentrations are relatively low in woodchips. The clear cut remains showed rather high heavy metal contents. If the heavy metal contents in this study are representative for the clear cut remains in the coastal forests generally, there might be reason to exert some caution when using the ash for forest fertilizing purposes.
Resumo:
Viruksien käyttö tuotekehityksen ja tutkimuksen vaatimien proteiinien tuottamiseen, syötävien rokotteiden kehittämiseen ja geeniterapiaan edustavat kasvavia biotekniikan sovellusalueita. Perunan A-virus (PVA) kuuluu potyviruksiin, joiden proteiinit tuotetaan aluksi yhtenä suurena molekyylinä, joka pilkotaan yksittäisiksi proteiineiksi viruksen itsensä tuottamilla entsyymeillä. Siten virusgenomiin lisätty vieras geeni käännetään proteiiniksi virusproteiinien mukana. Lopputuloksena kaikkia proteiineja tuotetaan kasvisoluissa samansuuruinen määrä. Lisäksi, viruksen proteiinikuoren koontimekanismi sallii perintöaineksen merkittävän lisäyksen ilman että viruksen tartutuskyky merkittävästi heikkenee. Koska virus monistuu ja leviää koko kasviin, jo melko pieni määrä kasveja riittää huomattavan proteiinimäärän tuottamiseen esimerkiksi säännösten mukaisessa kasvihuoneessa. Tämän työn tarkoituksena oli muuntaa PVA:n genomia siten, että virus soveltuisi yhden vieraan proteiinin tai useiden erilaisten proteiinien samanaikaiseen tuottamiseen kasveissa. Aluksi kokeiltiin viruksen replikaasia ja kuoriproteiinia koodaavien genomialueiden välistä kohtaa ja ihmisestä peräisi olevaa geeniä, joka tuotti S-COMT-entsyymiä (katekoli-O-metyylitransferaasi). Sen aktiivisuuden rajoittaminen auttaa Parkinsonintaudin hoidossa. Kasvissa tuotettua S-COMT:ia voitaisiin käyttää lääkekehityksessä estolääkkeiden testaukseen. Kahden viikon kuluttua tartutuksesta tupakan lehdissä oli entsymaattisesti aktiivista S-COMT:ia n. 1 % lehden liukoisista proteiineista. PVA:n P1-proteiinia koodaavalta alueelta oli paikannettu kohta, johon ehkä voitaisiin siirtää vieras geeni. Asia varmistettiin siirtämällä tähän kohtaan meduusan geeni, joka tuottaa UV-valossa vihreänä fluoresoivaa proteiinia (GFP). GFP-geeniä kantava PVA levisi kasvissa ja lisääntyi n. 30-50 %:iin viruksen normaalista pitoisuudesta. Koko kasvi fluoresoi vihreänä UV-valossa. Vieras geeni voidaan sijoittaa myös potyviruksen P1- ja HCpro-proteiineja koodaavien alueiden väliin. Samaan PVA-genomiin siirrettiin kolme geeniä, yksi kuhunkin kolmesta kloonauskohdasta: GFP-geeni P1:n sisälle, merivuokon lusiferaasigeeni P1/HCpro-kohtaan ja bakteerin beta-glukuronidaasigeeni (GUS) replikaasi/kuoriproteiini-kohtaan. Virusgenomin ja itse viruksen pituudet kasvoivat 38 %, mutta virus säilytti tartutuskykynsä. Se levisi kasveissa saavuttaen n. 15 % viruksen normaalista pitoisuudesta. Kaikki kolme vierasta proteiinia esiintyivät lehdissä aktiivisina.
Resumo:
Flax and hemp have traditionally been used mainly for textiles, but recently interest has also been focused on non-textile applications. Microbial quality throughout the whole processing chain of bast fibres has not previously been studied. This study concentrates on the microbial quality and possible microbial risks in the production chain of hemp and flax fibres and fibrous thermal insulations. In order to be able to utilize hemp and flax fibres, the bast fibres must be separated from the rest of the plant. Non-cellulosic components can be removed with various pretreatment processes, which are associated with a certain risk of microbial contamination. In this study enzymatic retting and steam explosion (STEX) were examined as pretreatment processes. On the basis of the results obtained in this study, the microbial contents on stalks of both plants studied increased at the end of the growing season and during the winter. However, by processing and mechanical separation it is possible to produce fibres containing less moulds and bacteria than the whole stem. Enzymatic treatment encouraged the growth of moulds in fibres. Steam explosion reduced the amount of moulds in fibres. Dry thermal treatment used in this study did not markedly reduce the amount of microbes. In this project an emission measurement chamber was developed which was suitable for measurements of emissions from both mat type and loose fill type insulations, and capable of interdisciplinary sampling. In this study, the highest amounts of fungal emissions were in the range of 10^3 10^5 cfu/m^3 from the flax and hemp insulations at 90% RH of air. The fungal emissions from stone wool, glass wool and recycled paper insulations were below 10^2 cfu/m^3 even at 90% RH. Equally low values were obtained from bast fibrous materials in lower humidities (at 30% and 80% RH of air). After drying of moulded insulations at 30% RH, the amounts of emitted moulds were in all cases higher compared to the emissions at 90% RH before drying. The most common fungi in bast fibres were Penicillium and Rhizopus. The widest variety of different fungi was in the untreated hemp and linseed fibres and in the commercial loose-fill flax insulation. Penicillium, Rhizopus and Paecilomyces were the most tolerant to steam explosion. According to the literature, the most common fungi in building materials and indoor air are Penicillium, Aspergillus and Cladosporium, which were all found in some of the bast fibre materials in this study. As organic materials, hemp and flax fibres contain high levels of nutrients for microbial growth. The amount of microbes can be controlled and somewhat decreased by the processing methods presented.
Resumo:
The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com
Resumo:
The tackling of coastal eutrophication requires water protection measures based on status assessments of water quality. The main purpose of this thesis was to evaluate whether it is possible both scientifically and within the terms of the European Union Water Framework Directive (WFD) to assess the status of coastal marine waters reliably by using phytoplankton biomass (ww) and chlorophyll a (Chl) as indicators of eutrophication in Finnish coastal waters. Empirical approaches were used to study whether the criteria, established for determining an indicator, are fulfilled. The first criterion (i) was that an indicator should respond to anthropogenic stresses in a predictable manner and has low variability in its response. Summertime Chl could be predicted accurately by nutrient concentrations, but not from the external annual loads alone, because of the rapid affect of primary production and sedimentation close to the loading sources in summer. The most accurate predictions were achieved in the Archipelago Sea, where total phosphorus (TP) and total nitrogen (TN) alone accounted for 87% and 78% of the variation in Chl, respectively. In river estuaries, the TP mass-balance regression model predicted Chl most accurately when nutrients originated from point-sources, whereas land-use regression models were most accurate in cases when nutrients originated mainly from diffuse sources. The inclusion of morphometry (e.g. mean depth) into nutrient models improved accuracy of the predictions. The second criterion (ii) was associated with the WFD. It requires that an indicator should have type-specific reference conditions, which are defined as "conditions where the values of the biological quality elements are at high ecological status". In establishing reference conditions, the empirical approach could only be used in the outer coastal water types, where historical observations of Secchi depth of the early 1900s are available. The most accurate prediction was achieved in the Quark. In the inner coastal water types, reference Chl, estimated from present monitoring data, are imprecise - not only because of the less accurate estimation method but also because the intrinsic characteristics, described for instance by morphometry, vary considerably inside these extensive inner coastal types. As for phytoplankton biomass, the reference values were less accurate than in the case of Chl, because it was possible to estimate reference conditions for biomass only by using the reconstructed Chl values, not the historical Secchi observations. An paleoecological approach was also applied to estimate annual average reference conditions for Chl. In Laajalahti, an urban embayment off Helsinki, strongly loaded by municipal waste waters in the 1960s and 1970s, reference conditions prevailed in the mid- and late 1800s. The recovery of the bay from pollution has been delayed as a consequence of benthic release of nutrients. Laajalahti will probably not achieve the good quality objectives of the WFD on time. The third criterion (iii) was associated with coastal management including the resources it has available. Analyses of Chl are cheap and fast to carry out compared to the analyses of phytoplankton biomass and species composition; the fact which has an effect on number of samples to be taken and thereby on the reliability of assessments. However, analyses on phytoplankton biomass and species composition provide more metrics for ecological classification, the metrics which reveal various aspects of eutrophication contrary to what Chl alone does.
Resumo:
Plant species differ in their effects on ecosystem productivity and it is recognised that these effects are partly due to plant species-specific influences on soil processes. Until recently, however, not much attention was given to the potential role played by soil biota in these species-specific effects. While soil decomposers are responsible for governing the availability of nutrients for plant production, they simultaneously depend on the amount of carbon provided by plants. Litter and rhizodeposition constitute the two basal resources that plants provide to soil decomposer food webs. While it has been shown that both of these can have effects on soil decomposer communities that differ among plant species, the putative significance of these effects for plant nitrogen (N) acquisition is currently understudied. My PhD work aimed at clarifying whether the species-specific influences of three temperate grassland plants on the soil microfood-web, through rhizodeposition and litter, can feed back to plant N uptake. The methods and approach used (15N labelling of plant litter in microcosm experiments) revealed to be an effective combination of tools in studying these feedbacks. Plant effects on soil organisms were shown to differ significantly between plant species and the effects could be followed across several trophic levels. The labelling of litter further permitted the evaluation of plant acquisition of N derived from soil organic matter. The results show that the structure of the soil microfood-web can have a significant role in plant N acquisition when the structure is experimentally manipulated, such as when comparing systems consisting of microbes to those consisting of microbes and their grazers. However, despite this, the results indicate that differences in N uptake from soil organic matter between different plant species are not related to the effects these species exert on the structure of the soil microfood-web. Rather, these differences in N uptake seem to be determined by other species-specific traits of live plants and their litter. My results thus indicate that different resources provided by different plant species may not induce species-specific decomposer feedbacks on plant N uptake from soil organic matter. This further suggests that the species-specific plant effects on soil decomposer communities may not, at least in the short term, have significant consequences on plant production.