1 resultado para Ck19
em Helda - Digital Repository of University of Helsinki
Resumo:
Transplantation of isolated islets from cadaver pancreas is a promising possibility for the optimal treatment of type 1 diabetes. The lack of islets is a major problem. Here we have investigated the possibility of generating islets in tissue culture of human pancreatic cells. We first reproduced a previously reported method of in vitro generation of endocrine cells from human adult pancreatic tissue. By tracing the bromodeoxyuridine-labeled cells in differentiated islet buds, we found that the pancreatic progenitor cells represented a subpopulation of cytokeratin 19 (CK19)-positive ductal cells. Serum-free medium and Matrigel overlay were essential for the endocrine differentiation. We then examined the involvement of preexisting islet cells in islet neogenesis. About 6-10% of endocrine cells dedifferentiated and acquired a transitional phenotype by coexpressing CK19. Significant cell proliferation was only observed in CK19-positive cells, but not in chromogranin A-positive endocrine cells. The in vitro-derived human islets were morphologically and functionally immature when compared with normal islets. Their insulin mRNA levels were only 4-5% of that found in fresh human islets, and glucose-stimulated insulin release was 3 times lower than that of control islets. Moreover, some immature endocrine cells coexpressed insulin and glucagon. After transplantation in nude mice, the in vitro-generated islets became mature with one type of hormone per endocrine cell. In addition, we also found that also in both fresh islet transplants many cells coexpressed endocrine markers and ductal marker CK19 as a sign of ductal to endocrine cell transition. Finally, we studied the effects of clinically used immunosuppressive drugs on precursor cell proliferation and differentiation. Mycophenolate mofetil (MMF) severely hampered duct-cell proliferation, and significantly reduced the total DNA content indicating its antiproliferative effect on the precursors. Tacrolimus mainly affected differentiated beta cells by decreasing the insulin content per DNA as well as the proportion of insulin-positive cells. Sirolimus and daclizumab did not show any individual or synergistic side effects suggesting that these drugs are amenable for use in clinical islet transplantation. In summary, we confirm the capacity of endocrine differentiation from progenitors present in the adult human pancreas. The plasticity of differentiated cell types of human pancreas may be a potential mechanism of human pancreas regeneration. Ductal cell differentiation into endocrine cells in transplanted islets may be an important factor in sustaining the long-term function of islet transplants. The immunosuppressive protocol is likely to be an important determinant of long-term clinical islet graft function. Moreover, these results provide new information on the mechanisms of pancreatic islet regeneration and provide the basis for the development of new strategies for the treatment of insulin deficient diabetes mellitus.