2 resultados para Cibber, Theophilus, 1703-1758.
em Helda - Digital Repository of University of Helsinki
Resumo:
Social groups are common across animal species. The reasons for grouping are straightforward when all individuals gain directly from cooperating. However, the situation becomes more complex when helping entails costs to the personal reproduction of individuals. Kin selection theory has offered a fruitful framework to explain such cooperation by stating that individuals may spread their genes not only through their own reproduction, but also by helping related individuals reproduce. However, kin selection theory also implicitly predicts conflicts when groups consist of non-clonal individuals, i.e. relatedness is less than one. Then, individual interests are not perfectly aligned, and each individual is predicted to favour the propagation of their own genome over others. Social insects provide a solid study system to study the interplay between cooperation and conflict. Breeding systems in social insects range from solitary breeding to eusocial colonies displaying complete division of reproduction between the fertile queen and the sterile worker caste. Within colonies, additional variation is provided by the presence of several reproductive individuals. In many species, the queen mates multiply, which causes the colony to consist of half-sib instead of full-sib offspring. Furthermore, in many species colonies contain multiple breeding queens, which further dilutes relatedness between colony members. Evolutionary biology is thus faced with the challenge to answer why such variation in social structure exists, and what the consequences are on the individual and population level. The main part of this thesis takes on this challenge by investing the dynamics of socially polymorphic ant colonies. The first four chapters investigate the causes and consequences of different social structures, using a combination of field studies, genetic analyses and laboratory experiments. The thesis ends with a theoretical chapter focusing on different social interactions (altruism and spite), and the evolution of harming traits. The main results of the thesis show that social polymorphism has the potential to affect the behaviour and traits of both individuals and colonies. For example, we found that genetic polymorphism may increase the phenotypic variation between individuals in colonies, and that socially polymorphic colonies may show different life history patterns. We also show that colony cohesion may be enhanced even in multiple-queen colonies through patterns of unequal reproduction between queens. However, the thesis also demonstrates that spatial and temporal variation between both populations and environments may affect individual and colony traits, to the degree that results obtained in one place or at one time may not be applicable in other situations. This opens up potential further areas of research to explain these differences.
Resumo:
The TOTEM collaboration has developed and tested the first prototype of its Roman Pots to be operated in the LHC. TOTEM Roman Pots contain stacks of 10 silicon detectors with strips oriented in two orthogonal directions. To measure proton scattering angles of a few microradians, the detectors will approach the beam centre to a distance of 10 sigma + 0.5 mm (= 1.3 mm). Dead space near the detector edge is minimised by using two novel "edgeless" detector technologies. The silicon detectors are used both for precise track reconstruction and for triggering. The first full-sized prototypes of both detector technologies as well as their read-out electronics have been developed, built and operated. The tests took place first in a fixed-target muon beam at CERN's SPS, and then in the proton beam-line of the SPS accelerator ring. We present the test beam results demonstrating the successful functionality of the system despite slight technical shortcomings to be improved in the near future.