2 resultados para Charge transfer mechanism

em Helda - Digital Repository of University of Helsinki


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The respiratory chain is found in the inner mitochondrial membrane of higher organisms and in the plasma membrane of many bacteria. It consists of several membrane-spanning enzymes, which conserve the energy that is liberated from the degradation of food molecules as an electrochemical proton gradient across the membrane. The proton gradient can later be utilized by the cell for different energy requiring processes, e.g. ATP production, cellular motion or active transport of ions. The difference in proton concentration between the two sides of the membrane is a result of the translocation of protons by the enzymes of the respiratory chain, from the negatively charged (N-side) to the positively charged side (P-side) of the lipid bilayer, against the proton concentration gradient. The endergonic proton transfer is driven by the flow of electrons through the enzymes of the respiratory chain, from low redox-potential electron donors to acceptors of higher potential, and ultimately to oxygen. Cytochrome c oxidase is the last enzyme in the respiratory chain and catalyzes the reduction of dioxygen to water. The redox reaction is coupled to proton transport across the membrane by a yet unresolved mechanism. Cytochrome c oxidase has two proton-conducting pathways through which protons are taken up to the interior part of the enzyme from the N-side of the membrane. The K-pathway transfers merely substrate protons, which are consumed in the process of water formation at the catalytic site. The D-pathway transfers both substrate protons and protons that are pumped to the P-side of the membrane. This thesis focuses on the role of two conserved amino acids in proton translocation by cytochrome c oxidase, glutamate 278 and tryptophan 164. Glu278 is located at the end of the D-pathway and is thought to constitute the branching point for substrate and pumped protons. In this work, it was shown that although Glu278 has an important role in the proton transfer mechanism, its presence is not an obligatory requirement. Alternative structural solutions in the area around Glu278, much like the ones present in some distantly related heme-copper oxidases, could in the absence of Glu278 support the formation of a long hydrogen-bonded water chain through which proton transfer from the D-pathway to the catalytic site is possible. The other studied amino acid, Trp164, is hydrogen bonded to the ∆-propionate of heme a3 of the catalytic site. Mutation of this amino acid showed that it may be involved in regulation of proton access to a proton acceptor, a pump site, from which the proton later is expelled to the P-side of the membrane. The ion pair that is formed by the ∆-propionate of heme a3 and arginine 473 is likely to form a gate-like structure, which regulates proton mobility to the P-side of the membrane. The same gate may also be part of an exit path through which water molecules produced at the catalytically active site are removed towards the external side of the membrane. Time-resolved optical and electrometrical experiments with the Trp164 to phenylalanine mutant revealed a so far undetected step in the proton pumping mechanism. During the A to PR transition of the catalytic cycle, a proton is transferred from Glu278 to the pump site, located somewhere in the vicinity of the ∆-propionate of heme a3. A mechanism for proton pumping by cytochrome c oxidase is proposed on the basis of the presented results and the mechanism is discussed in relation to some relevant experimental data. A common proton pumping mechanism for all members of the heme-copper oxidase family is moreover considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effective processing of powdered particles can facilitate powder handling and result in better drug product performance, which is of great importance in the pharmaceutical industry where the majority of active pharmaceutical ingredients (APIs) are delivered as solid dosage forms. The purpose of this work was to develop a new ultrasound-assisted method for particle surface modification and thin-coating of pharmaceutical powders. The ultrasound was used to produce an aqueous mist with or without a coating agent. By using the proposed technique, it was possible to decrease the interparticular interactions and improve rheological properties of poorly-flowing water-soluble powders by aqueous smoothing of the rough surfaces of irregular particles. In turn, hydrophilic polymer thin-coating of a hydrophobic substance diminished the triboelectrostatic charge transfer and improved the flowability of highly cohesive powder. To determine the coating efficiency of the technique, the bioactive molecule β-galactosidase was layered onto the surface of powdered lactose particles. Enzyme-treated materials were analysed by assaying the quantity of the reaction product generated during enzymatic cleavage of the milk sugar. A near-linear increase in the thickness of the drug layer was obtained during progressive treatment. Using the enzyme coating procedure, it was confirmed that the ultrasound-assisted technique is suitable for processing labile protein materials. In addition, this pre-treatment of milk sugar could be used to improve utilization of lactose-containing formulations for populations suffering from severe lactose intolerance. Furthermore, the applicability of the thin-coating technique for improving homogeneity of low-dose solid dosage forms was shown. The carrier particles coated with API gave rise to uniform distribution of the drug within the powder. The mixture remained homogeneous during further tabletting, whereas the reference physical powder mixture was subject to segregation. In conclusion, ultrasound-assisted surface engineering of pharmaceutical powders can be effective technology for improving formulation and performance of solid dosage forms such as dry powder inhalers (DPI) and direct compression products.