1 resultado para Carbon per cell

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Defects in mitochondrial DNA (mtDNA) maintenance cause a range of human diseases, including autosomal dominant progressive external ophthalmoplegia (adPEO). This study aimed to clarify the molecular background of adPEO. We discovered that deoxynucleoside triphosphate (dNTP) metabolism plays a crucial in mtDNA maintenance and were thus prompted to search for therapeutic strategies based on the modulation of cellular dNTP pools or mtDNA copy number. Human mtDNA is a 16.6 kb circular molecule present in hundreds to thousands of copies per cell. mtDNA is compacted into nucleoprotein clusters called nucleoids. mtDNA maintenance diseases result from defects in nuclear encoded proteins that maintain the mtDNA. These syndromes typically afflict highly differentiated, post-mitotic tissues such as muscle and nerve, but virtually any organ can be affected. adPEO is a disease where mtDNA molecules with large-scale deletions accumulate in patients tissues, particularly in skeletal muscle. Mutations in five nuclear genes, encoding the proteins ANT1, Twinkle, POLG, POLG2 and OPA1, have previously been shown to cause adPEO. Here, we studied a large North American pedigree with adPEO, and identified a novel heterozygous mutation in the gene RRM2B, which encodes the p53R2 subunit of the enzyme ribonucleotide reductase (RNR). RNR is the rate-limiting enzyme in dNTP biosynthesis, and is required both for nuclear and mitochondrial DNA replication. The mutation results in the expression of a truncated form of p53R2, which is likely to compete with the wild-type allele. A change in enzyme function leads to defective mtDNA replication due to altered dNTP pools. Therefore, RRM2B is a novel adPEO disease gene. The importance of adequate dNTP pools and RNR function for mtDNA maintenance has been established in many organisms. In yeast, induction of RNR has previously been shown to increase mtDNA copy number, and to rescue the phenotype caused by mutations in the yeast mtDNA polymerase. To further study the role of RNR in mammalian mtDNA maintenance, we used mice that broadly overexpress the RNR subunits Rrm1, Rrm2 or p53R2. Active RNR is a heterotetramer consisting of two large subunits (Rrm1) and two small subunits (either Rrm2 or p53R2). We also created bitransgenic mice that overexpress Rrm1 together with either Rrm2 or p53R2. In contrast to the previous findings in yeast, bitransgenic RNR overexpression led to mtDNA depletion in mouse skeletal muscle, without mtDNA deletions or point mutations. The mtDNA depletion was associated with imbalanced dNTP pools. Furthermore, the mRNA expression levels of Rrm1 and p53R2 were found to correlate with mtDNA copy number in two independent mouse models, suggesting nuclear-mitochondrial cross talk with regard to mtDNA copy number. We conclude that tight regulation of RNR is needed to prevent harmful alterations in the dNTP pool balance, which can lead to disordered mtDNA maintenance. Increasing the copy number of wild-type mtDNA has been suggested as a strategy for treating PEO and other mitochondrial diseases. Only two proteins are known to cause a robust increase in mtDNA copy number when overexpressed in mice; the mitochondrial transcription factor A (TFAM), and the mitochondrial replicative helicase Twinkle. We studied the mechanisms by which Twinkle and TFAM elevate mtDNA levels, and showed that Twinkle specifically implements mtDNA synthesis. Furthermore, both Twinkle and TFAM were found to increase mtDNA content per nucleoid. Increased mtDNA content in mouse tissues correlated with an age-related accumulation of mtDNA deletions, depletion of mitochondrial transcripts, and progressive respiratory dysfunction. Simultaneous overexpression of Twinkle and TFAM led to a further increase in the mtDNA content of nucleoids, and aggravated the respiratory deficiency. These results suggested that high mtDNA levels have detrimental long-term effects in mice. These data have to be considered when developing and evaluating treatment strategies for elevating mtDNA copy number.