3 resultados para CIRCULANS XYLANASE

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six experiments have been conducted to examine digestibility and feeding value of domestic Finnish fibre-rich cereals (barley and oats as compared to maize and wheat) and protein sources (rapeseed meal and cake, peas, faba beans, lupin seeds) for growing turkeys and to investigate effects of age of the birds (from 3 to 12 weeks of age) on digestion process and estimated nutrient digestibility and energy values. Besides, an objective of the study was to test applications of digestibility research methodology for turkeys. Total tract digestibility and apparent metabolizable energy (AME) was assayed in experimental cages using excreta collection, and a slaughter method was applied to sample small intestinal digesta for determination of apparent ileal crude protein digestibility (AICPD), jejuno-duodenal digesta viscosity and caecal volatile fatty acid (VFA) concentration. Digesta viscosity decreased and caecal VFA production increased with age of growing turkeys. Digesta retention times in the small intestine were generally longer in the older birds than in the younger ones. Crude fat digestibility and AME increased with age of growing turkeys, especially with viscous diets. AICPD seemed to decrease with age in most cases. Supplementation with β-gucanase-xylanase decreased viscosity, improved crude fat digestibility and metabolizable energy value and increased VFA production especially in barley-fed turkeys and especially in the young birds. Poor protein digestibility and low energy value of rapeseed meal and rapeseed cake decreased their feeding value for turkeys. In addition, a typical goitrogenic effect of rapeseed feeding was detected. Use of legume seeds as feed for growing turkeys is limited mostly by the low energy value in lupin seeds and the low ileal protein and amino acid digestibility in faba beans. Digestibility of fibre-rich protein sources was not improved with age of the turkeys. Euthanizing the turkeys for AICPD determination by carbon dioxide and bleeding led to lower digestibility values than mechanical stunning and cervical dislocation, suggesting inferiority of carbon dioxide stunning in experimental use. Comparison of AICPD and AME results obtained using different markers showed that considerable differences may occur, especially on total tract level, when acid-insoluble ash gave considerably lower AME values than titanium dioxide and chromic oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arabinoxylo-oligosaccharides (AXOS) can be prepared enzymatically from arabinoxylans (AX) and AXOS are known to possess prebiotic potential. Here the structural features of 10 cereal AX were examined. AX were hydrolysed by Shearzyme® to prepare AXOS, and their structures were fully analysed. The prebiotic potential of the purified AXOS was studied in the fermentation experiments with bifidobacteria and faecal microbiota. In AX extracted from flours and bran, high amounts of a-L-Araf units are attached to the b-D-Xylp main chain, whereas moderate or low degree of substitution was found from husks, cob and straw. Nuclear magnetic resonance (NMR) spectroscopy showed that flour and bran AX contain high amounts of a-L-Araf units bound to the O-3 of b-D-Xylp residues and doubly substituted b-D-Xylp units with a-L-Araf substituents at O-2 and O-3. Barley husk and corn cob AX contain high amounts of b-D-Xylp(1→2)-a-L-Araf(1→3) side chains, which can also be found in AX from oat spelts and rice husks, and in lesser amounts in wheat straw AX. Rye and wheat flour AX and oat spelt AX were hydrolysed by Shearzyme® (with Aspergillus aculeatus GH10 endo-1,4-b-D-xylanase as the main enzyme) for the production of AXOS on a milligram scale. The AXOS were purified and their structures fully analysed, using mass spectrometry (MS) and 1D and 2D NMR spectroscopy. Monosubstituted xylobiose and xylotriose with a-L-Araf attached to the O-3 or O-2 of the nonreducing end b-D-Xylp unit and disubstituted AXOS with two a-L-Araf units at the nonreducing end b-D-Xylp unit of xylobiose or xylotriose were produced. Xylobiose with b-D-Xylp(1→2)-a-L-Araf(1→3) side chain was also purified. These AXOS were used as standards in further identification and quantification of corresponding AXOS from the hydrolysates in high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis. The prebiotic potential of AXOS was tested in in vitro fermentation experiments. Bifidobacterium adolescentis ATCC 15703 and B. longum ATCC 15707 utilized AXOS from the AX hydrolysates. Both species released L-arabinose from AXOS, but B. adolescentis consumed the XOS formed, whereas B. longum fermented the L-arabinose released. The third species tested, B. breve ATCC 15700, grew poorly on these substrates. When cultivated on pure AXOS, the bifidobacterial mixture utilized pure singly substituted AXOS almost completely, but no growth was detected with pure doubly substituted AXOS as substrates. However, doubly substituted AXOS were utilized from the mixture of xylose, XOS and AXOS. Faecal microbiota utilized both pure singly and doubly substituted AXOS. Thus, a mixture of singly and doubly substituted AXOS could function as a suitable, slowly fermenting prebiotic substance. This thesis contributes to the structural information on cereal AX and preparation of mono and doubly substituted AXOS from AX. Understanding the utilization strategies is fundamental in evaluating the prebiotic potential of AXOS. Further research is still required before AXOS can be used in applications for human consumption.