4 resultados para CCL3

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fumonisin B1 (FB1) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and therefore there may also be human exposure to Fusarium mycotoxins, including FB1. FB1 affects the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase. It is neuro-, hepato- and nephrotoxic, and it is classified as possibly carcinogenic to humans. This study aimed to clarify the mechanisms behind FB1-induced neuro- and immunotoxicity. Four neural and glial cell lines of human, rat and mouse origin were exposed to graded doses of FB1 and the effects on the production of reactive oxygen species, lipid peroxidation, intracellular glutathione levels, cell viability and apoptosis were investigated. Furthermore, the effects of FB1, alone or together with lipopolysaccharide (LPS), on the mRNA and protein expression levels of different cytokines and chemokines were studied in human dendritic cells (DC). FB1 induced oxidative stress and cell death in all cell lines studied. Generally, the effects were only seen after prolonged exposure at 10 and 100 µM of FB1. Signs of apoptosis were also seen in all four cell lines. The sensitivities of the cell lines used in this study towards FB1 may be classified as human U-118MG glioblastoma > mouse GT1-7 hypothalamic > rat C6 glioblastoma > human SH-SY5Y neuroblastoma cells. When comparing cell lines of human origin, it can be concluded that glial cells seem to be more sensitive towards FB1 toxicity than those of neural origin. After exposure to FB1, significantly increased levels of the cytokine interferon-γ (IFNγ) were detected in human DC. This observation was further confirmed by FB1-induced levels of the chemokine CXCL9, which is known to be regulated by IFNγ. During co-exposure of DC to both LPS and FB1, significant inhibitions of the LPS-induced levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1β, and their regulatory chemokines CCL3 and CCL5 were observed. FB1 can thus affect immune responses in DC, and therefore, it is rather likely that it also affects other types of cells participating in the immune defence system. When evaluating the toxicity potential of FB1, it is important to consider the effects on different cell types and cell-cell interactions. The results of this study represent new information, especially about the mechanisms behind FB1-induced oxidative stress, apoptosis and immunotoxicity, as well as the varying sensitivities of different cell types towards FB1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the kinetics of several alkyl, halogenated alkyl, and alkenyl free radical reactions with NO2, O2, Cl2, and HCl reactants were studied over a wide temperature range in time resolved conditions. Laser photolysis photoionisation mass spectrometer coupled to a flow reactor was the experimental method employed and this thesis present the first measurements performed with the experimental system constructed. During this thesis a great amount of work was devoted to the designing, building, testing, and improving the experimental apparatus. Carbon-centred free radicals were generated by the pulsed 193 or 248 nm photolysis of suitable precursors along the tubular reactor. The kinetics was studied under pseudo-first-order conditions using either He or N2 buffer gas. The temperature and pressure ranges employed were between 190 and 500 K, and 0.5 45 torr, respectively. The possible role of heterogeneous wall reactions was investigated employing reactor tubes with different sizes, i.e. to significantly vary the surface to volume ratio. In this thesis, significant new contributions to the kinetics of carbon-centred free radical reactions with nitrogen dioxide were obtained. Altogether eight substituted alkyl (CH2Cl, CHCl2, CCl3, CH2I, CH2Br, CHBr2, CHBrCl, and CHBrCH3) and two alkenyl (C2H3, C3H3) free radical reactions with NO2 were investigated as a function of temperature. The bimolecular rate coefficients of all these reactions were observed to possess negative temperature dependencies, while pressure dependencies were not noticed for any of these reactions. Halogen substitution was observed to moderately reduce the reactivity of substituted alkyl radicals in the reaction with NO2, while the resonance stabilisation of the alkenyl radical lowers its reactivity with respect to NO2 only slightly. Two reactions relevant to atmospheric chemistry, CH2Br + O2 and CH2I + O2, were also investigated. It was noticed that while CH2Br + O2 reaction shows pronounced pressure dependence, characteristic of peroxy radical formation, no such dependence was observed for the CH2I + O2 reaction. Observed primary products of the CH2I + O2 reaction were the I-atom and the IO radical. Kinetics of CH3 + HCl, CD3 + HCl, CH3 + DCl, and CD3 + DCl reactions were also studied. While all these reactions possess positive activation energies, in contrast to the other systems investigated in this thesis, the CH3 + HCl and CD3 + HCl reactions show a non-linear temperature dependency on the Arrhenius plot. The reactivity of substituted methyl radicals toward NO2 was observed to increase with decreasing electron affinity of the radical. The same trend was observed for the reactions of substituted methyl radicals with Cl2. It is proposed that interactions of frontier orbitals are responsible to these observations and Frontier Orbital Theory could be used to explain the observed reactivity trends of these highly exothermic reactions having reactant-like transition states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asthma is a chronic inflammatory disorder of the airways. Remodelling in asthma is defined as the structural changes seen in the airways of asthmatics in comparison to healthy controls. Progressive loss of lung function also seen in asthma might be caused by remodelling. The research aims of this thesis were to investigate inflammation and remodelling in the airways of different types of asthmatics and smokers. The association between inflammation and remodelling was also examined in a mouse model of allergic airway inflammation. Healthy smokers showed increased numbers of macrophages in the BAL with no changes in the inflammatory cells in biopsies. Macrophages seemed to be quite quiescent, since mRNA expression for a wide variety of inflammatory mediators, especially chemokines CCL3, CCL4, CCL5 and CCL20, secreted by macrophages was significantly lower than in healthy non-smokers. Attenuated macrophage activity in the airway lumen may render smokers more susceptible to airway infections and have an impact on the development of other airway pathology. Patients with diisocyanate-induced asthma (DIA) on inhaled corticosteroids (ICS) who still had non-specific bronchial hyperreactivity (NSBHR) at the end of the follow-up showed increased expression of TNF-α, IL-6 and IL-15 mRNA in BAL cells compared to those without NSBHR. In addition to being markers for poor prognosis and possible slight glucocorticoid resistance, these cytokines might aid in guiding the treatment of DIA. The increase in the thickness of tenascin-C layer in the bronchial basement membrane (BM) was much less than usually seen in other types of asthma, which might not make tenascin-C a good marker for DIA. OVA-induced tenascin-C expression in the lung was attenuated in STAT4-/- mice with impaired Th1-type immunity compared to WT mice. Interestingly, STAT6-/- mice with impaired Th2-type immunity showed tenascin-C expression levels similar to those of WT mice. The clearest difference between these two knockout strains in response to OVA was that STAT4-/- mice exhibited no upregulation of IFN-γ and TNF-α mRNA expression. Thus, tenascin-C expression was unexpectedly more related to Th1 type reactions. In vitro studies confirmed the results. Human fibroblasts stimulated by TNF-α and IFN-γ showed increased expression of tenascin-C. Patients with newly diagnosed asthma showed increased expression of laminin α2 in the bronchial BM in comparison to patients with asthma symptoms only and healthy controls. Both patients with asthma and those with only asthma symptoms showed increased expression of the laminin β2 chain in comparison to controls. Thus, laminin α2 expression differentiated patients with clinical asthma from patients with symptoms only. Furthermore, the expression of laminin α2 and β2 was associated with NSBHR, linking very specific remodelling events to clinical findings.