28 resultados para CANCER-THERAPY
em Helda - Digital Repository of University of Helsinki
Resumo:
The p53-family consists of three transcription factors, p53, p73 and p63. The family members have similar but also individual functions connected to cell cycle regulation, development and tumorigenesis. p53 and p73 act mainly as tumor suppressors. During DNA damage caused by anticancer drugs or irradiation, p53 and p73 levels are upregulated in cancer cells leading to apoptosis and cell cycle arrest. p53 is mutated in almost 50 per cent of the cancers, causing the cancer cells unable to undergo cell death. Instead, p73 is rarely mutated in cancer cells and because of that could be more viable target for anticancer therapy. The network surrounding the regulation of p73 is extensive and has several potential targets for cancer therapy. One of the most studied is Itch ligase, the negative regulator of p73 levels. Gene therapy directed towards knockdown of Itch ligase is a potential approach but in need for more in vivo proof. p73 has two isoforms, transactivating TA-forms and dominant-negative ΔN-forms. The specific regulation of these isoforms could also offer a possible way for more effective cancer treatment. The literature work includes information of structures, isoforms, functions and possible therapeutic targets of p73. Also the main therapeutic approaches to date are introduced. The experimental part is based on transfection and cytotoxicity studies done e.g. in pancreatic cancer cells (Mia PaCa-2, PANC1, BxPc-3 and HPAC). The aim of the experimental work was to optimize the conditions for effective transfection with DAB16 dendrimer nanoparticles and to measure the cytotoxicity of plain dendrimers and DAB16-pDNA complexes. Also the protein levels of p73 and Itch ligase were measured by Western blotting. The work was done as a part of a bigger project, which was aiming to down regulate Itch ligase (negative regulator of p73) by siRNA/shRNA. Tranfection results were promising, showing good transfection efficacy with DAB16 N/P30 in pancreatic cancer cells (except in BxPc-3). Pancreatic cancer cells showed recovery in 3 days after they were exposed to plain dendrimer solution or to DAB16-pDNA. Measurement of protein levels by Western blotting was not optimal and the proposals for the improvement regarding e.g. the gels and the extracted protein amounts have been done.
Resumo:
Critical cellular decisions such as should the cell proliferate, migrate or differentiate, are regulated by stimulatory signals from the extracellular environment, like growth factors. These signals are transformed to cellular responses through their binding to specific receptors present at the surface of the recipient cell. The epidermal growth factor receptor (EGF-R/ErbB) pathway plays key roles in governing these signals to intracellular events and cell-to-cell communication. The EGF-R forms a signaling network that participates in the specification of cell fate and coordinates cell proliferation. Ligand binding triggers receptor dimerization leading to the recruitment of kinases and adaptor proteins. This step simultaneously initiates multiple signal transduction pathways, which result in activation of transcription factors and other target proteins, leading to cellular alterations. It is known that mutations of EGF-R or in the components of these pathways, such as Ras and Raf, are commonly involved in human cancer. The four best characterized signaling pathways induced by EGF-R are the mitogen-activated protein kinase cascades (MAPKs), the lipid kinase phosphatidylinositol 3 kinase (PI3K), a group of transcription factors called Signal Transducers and Activator of Transcription (STAT), and the phospholipase Cγ; (PLCγ) pathways. The activation of each cascade culminates in kinase translocation to the nucleus to stimulate various transcription factors including activator protein 1 (AP-1). AP-1 family proteins are basic leucine zipper (bZIP) transcription factors that are implicated in the regulation of a variety of cellular processes (proliferation and survival, growth, differentiation, apoptosis, cell migration, transformation). Therefore, the regulation of AP-1 activity is critical for the decision of cell fate and their deregulated expression is widely associated with many types of cancers, such as breast and prostate cancers. The aims of this study were to characterize the roles of EGF-R signaling during normal development and malignant growth in vitro and in vivo using different cell lines and tissue samples. We show here that EGF-R regulates cell proliferation but is also required for regulation of AP-1 target gene expression in fibroblasts in a MAP-kinase mediated manner. Furthermore, EGF-R signaling is essential for enterocyte proliferation and migration during intestinal maturation. EGF-R signaling network, especially PI3-K-Akt pathway mediated AP-1 activity is involved in cellular survival in response to ionizing radiation. Taken together, these results elucidate the connection of EGF-R and AP-1 in various cellular contexts and show their importance in the regulation of cellular behaviour presenting new treatment cues for intestinal perforations and cancer therapy.
Resumo:
Diffuse large B-cell lymphoma (DLBCL) is the most common of the non-Hodgkin lymphomas. As DLBCL is characterized by heterogeneous clinical and biological features, its prognosis varies. To date, the International Prognostic Index has been the strongest predictor of outcome for DLBCL patients. However, no biological characters of the disease are taken into account. Gene expression profiling studies have identified two major cell-of-origin phenotypes in DLBCL with different prognoses, the favourable germinal centre B-cell-like (GCB) and the unfavourable activated B-cell-like (ABC) phenotypes. However, results of the prognostic impact of the immunohistochemically defined GCB and non-GCB distinction are controversial. Furthermore, since the addition of the CD20 antibody rituximab to chemotherapy has been established as the standard treatment of DLBCL, all molecular markers need to be evaluated in the post-rituximab era. In this study, we aimed to evaluate the predictive value of immunohistochemically defined cell-of-origin classification in DLBCL patients. The GCB and non-GCB phenotypes were defined according to the Hans algorithm (CD10, BCL6 and MUM1/IRF4) among 90 immunochemotherapy- and 104 chemotherapy-treated DLBCL patients. In the chemotherapy group, we observed a significant difference in survival between GCB and non-GCB patients, with a good and a poor prognosis, respectively. However, in the rituximab group, no prognostic value of the GCB phenotype was observed. Likewise, among 29 high-risk de novo DLBCL patients receiving high-dose chemotherapy and autologous stem cell transplantation, the survival of non-GCB patients was improved, but no difference in outcome was seen between GCB and non-GCB subgroups. Since the results suggested that the Hans algorithm was not applicable in immunochemotherapy-treated DLBCL patients, we aimed to further focus on algorithms based on ABC markers. We examined the modified activated B-cell-like algorithm based (MUM1/IRF4 and FOXP1), as well as a previously reported Muris algorithm (BCL2, CD10 and MUM1/IRF4) among 88 DLBCL patients uniformly treated with immunochemotherapy. Both algorithms distinguished the unfavourable ABC-like subgroup with a significantly inferior failure-free survival relative to the GCB-like DLBCL patients. Similarly, the results of the individual predictive molecular markers transcription factor FOXP1 and anti-apoptotic protein BCL2 have been inconsistent and should be assessed in immunochemotherapy-treated DLBCL patients. The markers were evaluated in a cohort of 117 patients treated with rituximab and chemotherapy. FOXP1 expression could not distinguish between patients, with favourable and those with poor outcomes. In contrast, BCL2-negative DLBCL patients had significantly superior survival relative to BCL2-positive patients. Our results indicate that the immunohistochemically defined cell-of-origin classification in DLBCL has a prognostic impact in the immunochemotherapy era, when the identifying algorithms are based on ABC-associated markers. We also propose that BCL2 negativity is predictive of a favourable outcome. Further investigational efforts are, however, warranted to identify the molecular features of DLBCL that could enable individualized cancer therapy in routine patient care.
Resumo:
Suurin ongelma syöpätautien lääkehoidossa on sen aiheuttamat toksiset sivuvaikutukset. Tyypillisesti vain noin 1 % elimistöön annostellusta lääkeaineesta saavuttaa hoitoa tarvitsevat syöpäsolut, loppuosa lääkeaineesta jää vahingoittamaan elimistön terveitä soluja. Toksiset sivuvaikutukset rajoittavat lääkehoidon annoksen nostamista elimistössä riittävälle pitoisuudelle, mikä johtaa usein sairauden ennenaikaiseen pahenemiseen ja mahdollisen lääkeaineresistenssin kehittymiseen. Liposomien välittämä lääkeaineen kohdentaminen voidaan jakaa kahteen eri menetelmään: passiiviseen ja aktiiviseen kohdentamiseen. Liposomien passiivisen kohdentamisen tarkoituksena on lisätä sytotoksisen lääkeaineen paikallistumista pelkästään kasvainkudokseen. Passiivinen kohdentaminen perustuu liposomien kulkeutumiseen verenkierron mukana, jolloin liposomit kerääntyvät epänormaalisti muodostuneeseen kasvainkudokseen. Liposomien aktiivisella kohdentamisella pyritään parantamaan passiivisesti kohdentuvien liposomien terapeuttista tehokkuutta kohdentamalla lääkeaineen vaikutus pelkästään syöpäsoluihin. Aktiivisessa kohdennuksessa liposomin pintaan kiinnitetään ligandi, joka spesifisesti tunnistaa kohdesolun. Tämän pro gradu -tutkielman kirjallisen osion tarkoituksena oli tutustua syöpäkudokseen kohdennettujen liposomien ominaisuuksiin tehokkaan soluunoton ja sytotoksisuuden saavuttamiseksi. Kokeellisessa osiossa tutkittiin kohdennettujen liposomien soluunottoa ja sytotoksista vaikutusta ihmisen munasarjasta eristetyillä adenokarsinoomasoluilla (SKOV-3). Liposomit kohdennettiin setuksimabi (C225, Erbitux®) vasta-aineella, jonka on todettu olevan tietyissä syöpätyypeissä (mm. keuhko- ja kolorektaalisyövissä, pään ja kaulan syövissä sekä rinta-, munuais-, eturauhas-, haima- ja munasarjasyövissä) yli-ilmentyneen epidermaalisen kasvutekijäreseptoriperheen HER1-proteiinin (ErbB-1, EGFR, epidermal growth factor receptor) spesifinen ja selektiivinen inhibiittori. Afrikan viherapinan munuaisista lähtöisin olevaa CV-1 solulinjaa käytettiin kontrollina kuvaamaan elimistön normaaleja soluja. Kohdennettujen liposomien soluunottoa tutkittiin soluunottokokeilla, joissa käytettiin kontrollina kohdentamattomia pegyloituja liposomeja. Setuksimabi-vasta-aineen spesifinen sitoutuminen EGF-reseptoriin todettiin kilpailutuskokeilla. Doksorubisiinia sisältävien immunoliposomien sytotoksisuutta selvitettiin Alamar Blue™ -elävyystestillä. Lisäksi immunoliposomien säilyvyyttä seurattiin mittaamalla liposomien keskimääräinen halkaisija noin kahden viikon välein. Setuksimabi-vasta-aineella kohdennettujen liposomien soluunotto oli huomattavasti suurentunut SKOV-3 syöpäsoluissa ja doksorubisiinia sisältävät kohdennetut liposomit aiheuttivat voimakkaamman sytotoksisen vaikutuksen kuin kohdentamattomat liposomit. Kohdennettujen doksorubisiiniliposomien sytotoksisuus tuli kuitenkin esille viiveellä, mikä viittaa lääkeaineen hitaaseen vapautumiseen liposomista. Suurentunutta soluunottoa ja sytotoksista vaikutusta ei havaittu CV-1 solulinjassa. Kohdennettujen liposomien sovellusmahdollisuudet lääketieteessä ja syövän hoidossa ovat merkittävät. Tällä hetkellä liposomien kliininen käyttö rajoittuu passiivisesti kohdennettuihin liposomeihin (Doxil® (Am.),Caelyx® (Eur.)). Lupaavista solukokeista huolimatta kohdennettujen liposomien terapeuttinen käyttö tulevaisuudessa näyttää haasteelliselta.
Resumo:
Syövän diagnostiikassa ja hoidossa nanopartikkelit voivat toimia kuljetinaineina lääke- ja diagnostisille aineille tai nukleiinihappojaksoille. Kantaja-aineeseen voidaan liittää kohdennusmolekyylejä partikkelien passiivista tai aktiivista kohdennusta varten tai radioleima kuvantamista tai radioterapiaa varten. Kantaja-aineiden avulla voidaan parantaa lääkeaineen fysikaalis-kemiallisia ominaisuuksia ja biologista hyötyosuutta, vähentää systeemisiä sivuvaikutuksia, pidentää lääkeaineen puoliintumisaikaa ja siten harventaa annosteluväliä, sekä parantaa lääkeaineen pääsyä kohdekudokseen. Näin voidaan parantaa kemo- ja radioterapian tehoa ja hoidon onnistumisen todennäköisyyttä. Kirjallisuuskatsauksessa perehdytään nanokantajien rooliin syövän hoidossa. Vuosikymmeniä jatkuneesta tutkimuksesta huolimatta vain kaksi (Eurooppa) tai kolme (Yhdysvallat) nanopartikkeliformulaatiota on hyväksytty markkinoille syövän hoidossa. Ongelmina ovat riittämätön hakeutuminen kohdekudokseen, immunogeenisyys ja nanopartikkelien labiilius. Kokeellisessa osassa tutkitaan in vitro ja hiirillä in vivo 99mTc-leimattujen, PEG-verhoiltujen biotiiniliposomien kaksivaiheista kohdennusta ihmisen munasarjan adenokarsinoomasoluihin. Kohdentamiseen käytetään biotinyloitua setuksimabi-(Erbitux®) vasta-ainetta, joka sitoutuu solujen yli-ilmentämiin EGF-reseptoreihin. Kaksivaiheista kohdennusta verrataan suoraan ja/tai passiiviseen kohdennukseen. Tehokkaampien kuvantamismenetelmien kehitys on vauhdittanut kohdennettujen nanopartikkelien tutkimusta. Isotooppikuvantamista käyttäen pystytään seuraamaan radioleiman jakautumista elimistössä ja kuvantamaan solutasolla tapahtuvia ilmiöitä. Kirjallisuuskatsauksessa perehdytään SPECT- ja PET-kuvantamiseen syövän hoidossa, sekä niiden hyödyntämiseen lääkekehityksessä nanopartikkelien kuvantamisessa. Kyseiset kuvantamismenetelmät erottuvat muista menetelmistä korkean erotuskyvyn, herkkyyden ja helppokäyttöisyyden suhteen. Kokeellisessa osassa 99mTc-leimattujen liposomien distribuutiota hiirissä tutkittiin SPECT-CT-laitteen avulla. Aktiivisuus kasvaimessa, pernassa ja maksassa kvantifioitiin InVivoScope-ohjelman ja gammalaskijan avulla. Tuloksia verrattiin keskenään. In vitro-kokeessa saavutettiin kaksivaiheisella kohdennuksella 2,7- 3,5-kertainen (solulinjasta riippuen) hakeutuminen soluihin kontrolliliposomeihin verrattuna. Kuitenkin suora kohdennus toimi kaksivaiheista kohdennusta paremmin in vitro. In vivo –kokeissa liposomit jakautuivat kasvaimeen tehokkaammin i.p.-annosteltuna kuin i.v.-annosteltuna. Kaksivaiheisella kohdennuksella saavutettiin 1,24-kertainen jakautuminen kasvaimeen (% ID/g kudosta) passiivisesti kohdennettuihin liposomeihin verrattuna. %ID/elin oli kohdennetuilla liposomeilla 5,9 % ja passiivisesti kohdennetuilla 5,4%. Todellinen ero oli siis pieni. InVivoScope:n ja gammalaskijan tulokset eivät korreloineet keskenään. Lisätutkimuksia ja menetelmän optimointia vaaditaan liposomien kohdennuksessa kasvaimeen.
Resumo:
Human adenoviruses (Ads) have been classified into six species (A to F) currently containing 55 serotypes. For almost 2 decades vectors derived from group C serotype Ad5 have been extensively used for gene transfer studies. These Ad5 based vectors are able to efficiently infect many mammalian cell types (including both mitotic and post-mitotic cells) through interaction with a primary attachment receptor, the coxsackie and adenovirus receptor (CAR). Despite the many advantages of Ad5 based vectors a number of limitations have affected their therapeutic application to many diseases. Although they can transduce many tissue types, Ad5 based vectors are unable to efficiently transduce several potential disease target cell types, including hematopoietic stem cells and malignant tumor cells. Therefore, newer vectors have been developed based on Ad serotypes other than Ad5. This thesis focuses on species B Ads. Species B Ads are comprised of three groups based on their receptor usage. Group 1 of species B Ads (Ad16, 21, 35, 50) nearly exclusively utilize CD46 as a receptor; Group 2 (Ad3, Ad7, 14) share a common, unidentified receptor/s, which is not CD46 and which was tentatively named receptor X; Group 3 (Ad11) preferentially interacts with CD46, but also utilizes receptor X if CD46 is blocked. Species B group Ads are important human pathogens. Species B group 2 serotypes are isolated from patients with respiratory tract infections, whereas the Group 1 viruses are described as causing kidney and urinary tract infections. B-group Ad infections often occur in immunocompromised patients, including AIDS patients, recipients of bone marrow transplants, or chemotherapy patients. Recent studies performed in U.S. military training facilities indicate an emergence of diverse species B serotypes at the majority of sites. This included the group 1 serotype 21 and the group 2 serotypes 3, 7, and 14. CD46-targeting vectors derived from Ad35 and Ad11 are important tools for in vitro gene transfer into human stem cells, including hematopoietic stem cells and induced pluripotent stem cells. Ad35 and Ad11 have been used as tools for cancer therapy, because CD46 appears to be uniformely overexpressed on many cancers. Furthermore, receptor X-targeting vectors, i.e vectors derived from Ad3 or vectors containing Ad3 fibers have shown superior in the transduction of tumor cells both in vitro and in vivo and are currently being used clinically in cancer patients. While extensive basic virology studies have been done on Ad5, the information of species B group 1 interaction with CD46 is limited. Furthermore, the receptor for a major subgroup of species B Ads (receptor X) is unknown. The goal of this thesis was it therefore to better understand virological and translational aspects of species B Ads. The specific findings described in this thesis include i) the identification of CD46 binding sites within the Ad35 fiber knob, ii) the study of the in vitro and in vivo properties of Ad vectors with increased affinity to CD46. iii) the study of the receptor usage of a newly emergent Ad14a, iv) the identification of desmoglein 2 as the receptor for Ad3, Ad7, Ad11, and Ad14, v) the delineation of structural details of Ad3 virus interaction with DSG2, and vi) the analysis of functional consequences of Ad3-DSG2 interaction. As a result of these basic virology studies two Ad-derived recombinant proteins have been generated that can be used to enhance cancer therapy by monoclonal antibodies.
Resumo:
Worldwide and notably in the developed countries, cancer is an increasing cause of morbidity and mortality, being the second most common cause of death after ischemic heart disease. Now and in the future new cancer cases need to be diagnosed earlier. Prognostic factors may be helpful in recognizing and handling those patients who need more aggressive therapy, and it is also desirable to predict treatment response accurately. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein predominantly expressed in malignant tissues and inhibiting protein phosphatase 2A (PP2A) activity; it is a promising target for cancer therapy. The aim of this thesis was to evaluate the prognostic role of CIP2A in solid cancers, and for this purpose to explore expression of CIP2A, and investigating regulation of CIP2A in order to gain insight into signalling pathways leading to alteration in prognosis. Patients diagnosed with gastric, serous ovarian, tongue, or colorectal cancer at Helsinki University Central Hospital were included. Tumour tissue microarrays assembled from specimens from these patients were prepared and stained immunohistochemically for CIP2A protein expression. Associations with clinicopathologic parameters and other biomarkers were explored, and survival analyses were done according to the Kaplan-Meier method. Study of the role of CIP2A in intracellular signalling in vitro involved gastric, ovarian, and tongue cancer cell lines. We found CIP2A to be highly expressed in gastric, ovarian, tongue, and colorectal cancer specimens. CIP2A was associated with clinicopathologic parameters characterizing an aggressive disease, namely advanced stage, high grade, p53 immunopositivity, and high proliferation index. CIP2A led to recognition of gastric, ovarian, and tongue cancer patients with poor prognosis, however, with a cancer type-specific cut-off level for prognostic significance. In tongue cancer, it served as an independent prognostic marker. In contrast, in colorectal cancer, CIP2A provided no prognostic value. In cancer cell lines, CIP2A was highly expressed at both protein and mRNA levels, and promoted cell proliferation and anchorage-independent growth. In gastric cancer, we demonstrated with a MYCER construct in mouse embryo fibroblasts that activation of MYC led to increased CIP2A mRNA expression, and hence we suggested that a positive feedback mechanism between CIP2A and MYC may potentiate and prolong the oncogenic activity of these proteins. We demonstrated in ovarian cancer an association between CIP2A and EGFR protein overexpression and EGFR gene amplification. In ovarian and tongue cancer cells we showed that depletion of EGFR downregulates CIP2A expression. In conclusion, high CIP2A expression occurred frequently among patients with aggressive disease. CIP2A may serve as a prognostic marker in gastric, ovarian, and tongue cancer and thus may help in tailoring therapy for cancer patients. The positive feedback mechanism between CIP2A and MYC, as well as the positive regulation of CIP2A by EGFR, are a few signalling pathways regulating and regulated by CIP2A. These and other mechanisms need to be studied further, however. CIP2A is a potential target for therapy, and its potential role as predictive marker and as a tumour marker in serum requires exploration.
Resumo:
Advanced stage head and neck cancers (HNC) with distant metastasis, as well as prostate cancers (PC), are devastating diseases currently lacking efficient treatment options. One promising developmental approach in cancer treatment is the use of oncolytic adenoviruses, especially in combination therapy with conventional cancer therapies. The safety of the approach has been tested in many clinical trials. However, antitumor efficacy needs to be improved in order to establish oncolytic viruses as a viable treatment alternative. To be able to test in vivo the effects on anti-tumor efficiency of a multimodal combination therapy of oncolytic adenoviruses with the standard therapeutic combination of radiotherapy, chemotherapy and Cetuximab monoclonal antibody (mAb), a xenograft HNC tumor model was developed. This model mimics the typical clinical situation as it is initially sensitive to cetuximab, but resistance develops eventually. Surprisingly, but in agreement with recent findings for chemotherapy and radiotherapy, a higher proportion of cells positive for HNC cancer stem cell markers were found in the tumors refractory to cetuximab. In vitro as well as in vivo results found in this study support the multimodal combination therapy of oncolytic adenoviruses with chemotherapy, radiotherapy and monoclonal antibody therapy to achieve increased anti-tumor efficiency and even complete tumor eradication with lower treatment doses required. In this study, it was found that capsid modified oncolytic viruses have increased gene transfer to cancer cells as well as an increased antitumor effect. In order to elucidate the mechanism of how oncolytic viruses promote radiosensitization of tumor cells in vivo, replicative deficient viruses expressing several promising radiosensitizing viral proteins were tested. The results of this study indicated that oncolytic adenoviruses promote radiosensitization by delaying the repair of DNA double strand breaks in tumor cells. Based on the promising data of the first study, two tumor double-targeted oncolytic adenoviruses armed with the fusion suicide gene FCU1 or with a fully human mAb specific for human Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) were produced. FCU1 encodes a bifunctional fusion protein that efficiently catalyzes the direct conversion of 5-FC, a relatively nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine monophosphate, bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Anti-CTLA4 mAb promotes direct killing of tumor cells via apoptosis and most importantly immune system activation against the tumors. These armed oncolytic viruses present increased anti-tumor efficacy both in vitro and in vivo. Furthermore, by taking advantage of the unique tumor targeted gene transfer of oncolytic adenoviruses, functional high tumor titers but low systemic concentrations of the armed proteins were generated. In addition, supernatants of tumor cells infected with Ad5/3-24aCTLA4, which contain anti-CTLA4 mAb, were able to effectively immunomodulate peripheral blood mononuclear cells (PBMC) of cancer patients with advanced tumors. -- In conclusion, the results presented in this thesis suggest that genetically engineered oncolytic adenoviruses have great potential in the treatment of advanced and metastatic HNC and PC.
Resumo:
Adenoviral gene therapy is an experimental approach to cancer refractory to standard cancer therapies. Adenoviruses can be utilized as vectors to deliver therapeutic transgenes into cancer cells, while gene therapy with oncolytic adenoviruses exploits the lytic potential of viruses to kill tumor cells. Although adenoviruses demonstrate several advantages over other vectors - such as the unparalleled transduction efficacy and natural tropism to a wide range of tissues - the gene transfer efficacy to cancer cells has been limited, consequently restricting the therapeutic effect. There are, however, several approaches to circumvent this problem. We utilized different modified adenoviruses to obtain information on adenovirus tropism towards non-small cell lung cancer (NSCLC) cells. To enhance therapeutic outcome, oncolytic adenoviruses were evaluated. Further, to enhance gene delivery to tumors, we used mesenchymal stem cells (MSCs) as carriers. To improve adenovirus specificity, we investigated whether widely used cyclooxygenase 2 (Cox-2) promoter is induced by adenovirus infection in nontarget cells and whether selectivity can be retained by the 3 untranslated region (UTR) AU-rich elements. In addition, we investigated whether switching adenovirus fiber can retain gene delivery in the presence of neutralizing antibodies. Our results show that adenoviruses, whose capsids were modified with arginine-glycine-aspartatic acid (RGD-4C), the serotype 3 knob, or polylysins displayed enhanced gene transfer into NSCLC cell lines and fresh clinical specimens from patients. The therapeutic efficacy was further improved by using respective oncolytic adenoviruses with isogenic 24bp deletion in the E1A gene. Cox-2 promoter was also shown to be induced in normal and tumor cells following adenovirus infection, but utilization of 3 UTR elements can increase the tumor specificity of the promoter. Further, the results suggested that use of MSCs could enhance the bioavailability and delivery of adenoviruses into human tumors, although cells had no tumor tropism per se. Finally, we demonstrated that changing adenovirus fiber can allow virus to escape from existing neutralizing antibodies when delivered systemically. In conclusion, these results reveal that adenovirus gene transfer and specificity can be increased by using modified adenoviruses and MSCs as carriers, and fiber modifications simultaneously decrease the effect of neutralizing antibodies. This promising data suggest that these approaches could translate into clinical testing in patients with NSCLC refractory to current modalities.
Resumo:
The possible carcinogenic risk of immunosuppressive therapies is an important issue in everyday clinical practise. Carcinogenesis is a slow multi step procedure, thus a long latency period is needed before cancer develops. PUVA therapy is used for many skin diseases including psoriasis, early stage cutaneous T cell lymphoma, atopic dermatitis, palmoplantar pustulosis and chronic eczema. There has been concern about the increased melanoma risk associated to PUVA therapy, which has previously been associated with an increased risk on non-melanoma skin cancer, especially squamous cell carcinoma. The increased risk of basal cell carcinoma (BCC) is also documented but it is modest compared to squamous cell carcinoma (SCC). This thesis evaluated melanoma and noncutaneous cancer risk associated to PUVA, and the persistence of nonmelanoma cancer risk after the cessation of PUVA treatment. Also, the influence of photochemotherapy to the development of secondary cancers in cutaneous T cell lymphoma and the role of short term cyclosporine in later cancer development in inflammatory skin diseases were evaluated. The first three studies were performed on psoriasis patients. The risk of melanoma started to increase 15 years after the first treatment with PUVA. The risk was highest among persons who had received over 250 treatments compared to those under 250 treatments. In noncutaneous cancer, the overall risk was not increased (RR=1.08,95% CI=0.93-1.24), but significant increases in risk were found in thyroid cancer, breast cancer and in central nervous system neoplasms. These cancers were not associated to PUVA. The increased risk of SCC was associated to high cumulative UVA exposure in the PUVA regimen. The patients with high risk had no substantial exposure to other carcinogens. In BCC there was a similar but more modest tendency. In the two other studies, the risk of all secondary cancers (SIR) in CTCL patients was 1.4 (95% CI=1.0-1.9). In separate sites, the risk of lung cancer, Hodgkin and non-Hodgkin lymphomas were increased. PUVA seemed not to contribute to any extent to the appearance of these cancers. The carcinogenity of short-term cyclosporine was evaluated in inflammatory skin diseases. No increased risk for any type of cancer including the skin cancers was detected. To conclude, our studies confirm the increased skin cancer risk related to PUVA treatment in psoriasis patients. In clinical practice, this has led to a close and permanent follow-up of patients treated with PUVA. In CTCL patients, PUVA treatment did not contribute to the development of secondary cancers. We could not detect any increase in the risk of cancer in patients treated with short term cyclosporine, unlike in organ transplant patients under such long-term therapy.
Resumo:
Since national differences exist in genes, environment, diet and life habits and also in the use of postmenopausal hormone therapy (HT), the associations between different hormone therapies and the risk for breast cancer were studied among Finnish postmenopausal women. All Finnish women over 50 years of age who used HT were identified from the national medical reimbursement register, established in 1994, and followed up for breast cancer incidence (n= 8,382 cases) until 2005 with the aid of the Finnish Cancer Registry. The risk for breast cancer in HT users was compared to that in the general female population of the same age. Among women using oral or transdermal estradiol alone (ET) (n = 110,984) during the study period 1994-2002 the standardized incidence ratio (SIR) for breast cancer in users for < 5 years was 0.93 (95% confidence interval (CI) 0.80–1.04), and in users for ≥ 5 years 1.44 (1.29–1.59). This therapy was associated with similar rises in ductal and lobular types of breast cancer. Both localized stage (1.45; 1.26–1.66) and cancers spread to regional nodes (1.35; 1.09–1.65) were associated with the use of systemic ET. Oral estriol or vaginal estrogens were not accompanied with a risk for breast cancer. The use of estrogen-progestagen therapy (EPT) in the study period 1994-2005 (n= 221,551) was accompanied with an increased incidence of breast cancer (1.31;1.20-1.42) among women using oral or transdermal EPT for 3-5 years, and the incidence increased along with the increasing duration of exposure (≥10 years, 2.07;1.84-2.30). Continuous EPT entailed a significantly higher (2.44; 2.17-2.72) breast cancer incidence compared to sequential EPT (1.78; 1.64-1.90) after 5 years of use. The use of norethisterone acetate (NETA) as a supplement to estradiol was accompanied with a higher incidence of breast cancer after 5 years of use (2.03; 1.88-2.18) than that of medroxyprogesterone acetate (MPA) (1.64; 1.49-1.79). The SIR for the lobular type of breast cancer was increased within 3 years of EPT exposure (1.35; 1.18-1.53), and the incidence of the lobular type of breast cancer (2.93; 2.33-3.64) was significantly higher than that of the ductal type (1.92; 1.67-2.18) after 10 years of exposure. To control for some confounding factors, two case control studies were performed. All Finnish women between the ages of 50-62 in 1995-2007 and diagnosed with a first invasive breast cancer (n= 9,956) were identified from the Finnish Cancer Registry, and 3 controls of similar age (n=29,868) without breast cancer were retrieved from the Finnish national population registry. Subjects were linked to the medical reimbursement register for defining the HT use. The use of ET was not associated with an increased risk for breast cancer (1.00; 0.92-1.08). Neither was progestagen-only therapy used less than 3 years. However, the use of tibolone was associated with an elevated risk for breast cancer (1.39; 1.07-1.81). The case-control study confirmed the results of EPT regarding sequential vs. continuous use of progestagen, including progestagen released continuously by an intrauterine device; the increased risk was seen already within 3 years of use (1.65;1.32-2.07). The dose of NETA was not a determinant as regards the breast cancer risk. Both systemic ET, and EPT are associated with an elevation in the risk for breast cancer. These risks resemble to a large extent those seen in several other countries. The use of an intrauterine system alone or as a complement to systemic estradiol is also associated with a breast cancer risk. These data emphasize the need for detailed information to women who are considering starting the use of HT.
Resumo:
Prostate cancer is the most common cancer in males. Although many patients with localized disease can be cured with surgery and radiotherapy, advanced disease and especially castration resistant metastatic disease remains incurable, with a median life expectancy of less than 18 months. Oncolytic adenoviruses (Ads) are a new promising treatment against cancer due to their innate capacity to kill cancer cells. Viral replication in tumor cells leads to oncolysis and production of a multiplicity of new virions that are capable of further destroying cancerous tissue. Oncolytic Ads can be modified for tumor targeted infection and replication and be armed with therapeutic transgenes to maximize the oncolytic effect. Worldwide, clinical trials with oncolytic Ads have demonstrated good safety while the antitumor efficacy remains to be improved. Importantly, the best responses have been reported when oncolytic adenoviruses have been combined with standard cancer treatments, such as chemotherapy and radiation. Further, a challenge in many virotherapy approaches has been the monitoring of virus replication in vivo. Reporter genes have been extensively used as transgenes to evaluate the biodistribution of the virus and activity of specific promoters. However, these techniques are often limited to preclinical evaluation and not amenable to human use. The aim of the thesis was to find and develop new oncolytic Ads with maximum efficacy against metastatic, castration resistant prostate cancer and study them in vitro and in vivo combined to different forms of radiation therapy. Using combination therapy, we were aiming for better antitumor efficacy with reduced side effects. Capsid modified Ads for enhanced transduction were studied. Serotype 3 targeted chimera, Ad5/3, was found to have enhanced infectivity for prostate cancer and was used for developing new viruses for the study. Correlation between Ad-encoded marker peptide secretion and simultaneous viral replication was evaluated and the effects of radiotherapy on viral replication were studied in detail. We found that the repair of double strand breaks caused by ionizing radiation was inhibited by adenoviral proteins and led to autophagic cell death. Both subcutaneous models and intrapulmonary tumor models mimicking metastatic, aggressive disease were used in vivo. Virus efficacy was evaluated by intratumoral injections. Also, intravenous administration was evaluated to study the effectiveness in metastatic disease. Oncolytic adenovirus treatment led to significant tumor growth control and increased the survival rate of the mice. These results were further improved when oncolytic Ads were combined with radiation therapy. Oncolytic Ads expressing human sodium/iodide transporter (hNIS) as a transgene were evaluated for their oncolytic potency and for the functionality of hNIS in vitro and in vivo. Monitoring of viral replication was also assessed using different imaging modalities relative to clinical use. SPECT imaging of tumor-bearing mice was evaluated and combined with simultaneous CT-scanning to obtain important anatomical information on biodistribution, also in a three-dimensional form. It was shown that hNIS-expressing adenoviruses could harbour a bi-functional transgene allowing for localization and imaging of viral replication. Targeted radiotherapy was applied by systemic radioiodide administration and resulted in iodide accumulation into Ad-infected tumor. The combination treatment showed significantly enhanced antitumor efficacy in mice bearing prostate cancer tumors. In summary, the results presented above aim to provide new treatment modalities for castration resistant prostate cancer. Molecular insights were provided for better understanding of the benefits of combined radiation therapy and oncolytic adenoviruses, which will hopefully facilitate the translation of the approach into clinical use for humans.