24 resultados para British Red Cross Society.
em Helda - Digital Repository of University of Helsinki
Resumo:
The evacuation of Finnish children to Sweden during WW II has often been called a small migration . Historical research on this subject is scarce, considering the great number of children involved. The present research has applied, apart from the traditional archive research, the framework of history-culture developed by Rüsen in order to have an all-inclusive approach to the impact of this historical event. The framework has three dimensions: political, aesthetic and cognitive. The collective memory of war children has also been discussed. The research looks for political factors involved in the evacuations during the Winter War and the Continuation War and the post-war period. The approach is wider than a purely humanitarian one. Political factors have had an impact in both Finland and Sweden, beginning from the decision-making process and ending with the discussion of the unexpected consequences of the evacuations in the Finnish Parliament in 1950. The Winter War (30.11.1939 13.3.1940) witnessed the first child transports. These were also the model for future decision making. The transports were begun on the initiative of Swedes Maja Sandler, the wife of the resigned minister of foreign affairs Rickard Sandler, and Hanna Rydh-Munck af Rosenschöld , but this activity was soon accepted by the Swedish government because the humanitarian help in the form of child transports lightened the political burden of Prime Minister Hansson, who was not willing to help Finland militarily. It was help that Finland never asked for and it was rejected at the beginning. The negative response of Minister Juho Koivisto was not taken very seriously. The political forces in Finland supporting child transports were stronger than those rejecting them. The major politicians in support belonged to Finland´s Swedish minority. In addition, close to 1 000 Finnish children remained in Sweden after the Winter War. No analysis was made of the reasons why these children did not return home. A committee set up to help Finland and Norway was established in Sweden in 1941. Its chairman was Torsten Nothin, an influential Swedish politician. In December 1941 he appealed to the Swedish government to provide help to Finnish children under the authority of The International Red Cross. This plea had no results. The delivery of great amounts of food to Finland, which was now at war with Great Britain, had automatically caused reactions among the allies against the Swedish imports through Gothenburg. This included the import of oil, which was essential for the Swedish navy and air force. Oil was later used successfully to force a reduction in commerce between Sweden and Finland. The contradiction between Sweden´s essential political interests and humanitarian help was solved in a way that did not harm the country´s vital political interests. Instead of delivering help to Finland, Finnish children were transported to Sweden through the organisations that had already been created. At the beginning of the Continuation War (25.6.1941 27.4.1945) negative opinion regarding child transports re-emerged in Finland. Karl-August Fagerholm implemented the transports in September 1941. In 1942, members of the conservative parties in the Finnish Parliament expressed their fear of losing the children to the Swedes. They suggested that Finland should withdraw from the inter-Nordic agreement, according to which the adoptions were approved by the court of the country where the child resided. This initiative failed. Paavo Virkkunen, an influential member of the conservative party Kokoomus in Finland, favoured the so-called good-father system, where help was delivered to Finland in the form of money and goods. Virkkunen was concerned about the consequences of a long stay in a Swedish family. The risk of losing the children was clear. The extreme conservative party (IKL, the Patriotic Movement of the Finnish People) wanted to alienate Finland from Sweden and bring Finland closer to Germany. Von Blücher, the German ambassador to Finland, had in his report to Berlin, mentioned the political consequences of the child transports. Among other things, they would bring Finland and Sweden closer to each other. He had also paid attention to the Nordic political orientation in Finland. He did not question or criticize the child transports. His main interest was to increase German political influence in Finland, and the Nordic political orientation was an obstacle. Fagerholm was politically ill-favoured by the Germans, because he had a strong Nordic political disposition and had criticised Germany´s activities in Norway. The criticism of child transports was at the same time criticism of Fagerholm. The official censorship organ of the Finnish government (VTL) denied the criticism of child transports in January 1942. The reasons were political. Statements made by members of the Finnish Parliament were also censored, because it was thought that they would offend the Swedes. In addition, the censorship organ used child transports as a means of active propaganda aimed at improving the relations between the two countries. The Finnish Parliament was informed in 1948 that about 15 000 Finnish children still remained in Sweden. These children would stay there permanently. In 1950 the members of the Agrarian Party in Finland stated that Finland should actively strive to get the children back. The party on the left (SKDL, the Democratic Movement of Finnish People) also focused on the unexpected consequences of the child transports. The Social Democrats, and largely Fagerholm, had been the main force in Finland behind the child transports. Members of the SKDL, controlled by Finland´s Communist Party, stated that the war time authorities were responsible for this war loss. Many of the Finnish parents could not get their children back despite repeated requests. The discussion of the problem became political, for example von Born, a member of the Swedish minority party RKP, related this problem to foreign policy by stating that the request to repatriate the Finnish children would have negative political consequences for the relations between Finland and Sweden. He emphasized expressing feelings of gratitude to the Swedes. After the war a new foreign policy was established by Prime Minister (1944 1946) and later President (1946 1956) Juho Kusti Paasikivi. The main cornerstone of this policy was to establish good relations with the Soviet Union. The other, often forgotten, cornerstone was to simultaneously establish good relations with other Nordic countries, especially Sweden, as a counterbalance. The unexpected results of the child evacuation, a Swedish initiative, had violated the good relations with Sweden. The motives of the Democratic Movement of Finnish People were much the same as those of the Patriotic Movement of Finnish People. Only the ideology was different. The Nordic political orientation was an obstacle to both parties. The position of the Democratic Movement of Finnish People was much better than that of the Patriotic Movement of Finnish People, because now one could clearly see the unexpected results, which included human tragedy for the many families who could not be re-united with their children despite their repeated requests. The Swedes questioned the figure given to the Finnish Parliament regarding the number of children permanently remaining in Sweden. This research agrees with the Swedes. In a calculation based on Swedish population registers, the number of these children is about 7 100. The reliability of this figure is increased by the fact that the child allowance programme began in Sweden in 1948. The prerequisite to have this allowance was that the child be in the Swedish population register. It was not necessary for the child to have Swedish nationality. The Finnish Parliament had false information about the number of Finnish children who remained in Sweden in 1942 and in 1950. There was no parliamentary control in Finland regarding child transports, because the decision was made by one cabinet member and speeches by MPs in the Finnish Parliament were censored, like all criticism regarding child transports to Sweden. In Great Britain parliamentary control worked better throughout the whole war, because the speeches regarding evacuation were not censored. At the beginning of the war certain members of the British Labour Party and the Welsh Nationalists were particularly outspoken about the scheme. Fagerholm does not discuss to any great extent the child transports in his memoirs. He does not evaluate the process and results as a whole. This research provides some possibilities for an evaluation of this sort. The Swedish medical reports give a clear picture of the physical condition of the Finnish children when arriving in Sweden. The transports actually revealed how bad the situation of the poorest children was. According to Titmuss, similar observations were made in Great Britain during the British evacuations. The child transports saved the lives of approximately 2 900 children. Most of these children were removed to Sweden to receive treatment for illnesses, but many among the healthy children were undernourished and some suffered from the effects of tuberculosis. The medical inspection in Finland was not thorough. If you compare the figure of 2 900 children saved and returned with the figure of about 7 100 children who remained permanently in Sweden, you may draw the conclusion that Finland as a country failed to benefit from the child transports, and that the whole operation was a political mistake with far-reaching consequenses. The basic goal of the operation was to save lives and have all the children return to Finland after the war. The difficulties with the repatriation of the children were mainly psychological. The level of child psychology in Finland at that time was low. One may question the report by Professor Martti Kaila regarding the adaptation of children to their families back in Finland. Anna Freud´s warnings concerning the difficulties that arise when child evacuees return are also valid in Finland. Freud viewed the emotional life of children in a way different from Kaila: the physical survival of a small child forces her to create strong emotional ties to the person who is looking after her. This, a characteristic of all small children, occurred with the Finnish children too, and it was something the political decision makers in Finland could not see during and after the war. It is a characteristic of all little children. Yet, such experiences were already evident during the Winter War. The best possible solution had been to limit the child transports only to children in need of medical treatment. Children from large and poor families had been helped by organising meals and by buying food from Denmark with Swedish money. Assisting Finland by all possible means should have been the basic goal of Fagerholm in September 1941, when the offer of child transports came from Sweden. Fagerholm felt gratitude towards the Swedes. The risks became clear to him only in 1943. The war children are today a rather scattered and diffuse group of people. Emotionally, part of these children remained in Sweden after the war. There is no clear collective memory, only individual memories; the collective memory of the war children has partly been shaped later through the activities of the war child associations. The main difference between the children evacuated in Finland (for example from Karelia to safer areas with their families) and the war children, who were sent abroad, is that the war children lack a shared story and experience with their families. They were outsiders . The whole matter is sensitive to many of such mothers and discussing the subject has often been avoided in families. The war-time censorship has continued in families through silence and avoidance and Finnish politicians and Finnish families had to face each other on this issue after the war. The lack of all-inclusive historical research has also prevented the formation of a collective awareness among war children returned to Finland or those remaining permanently abroad.. Knowledge of historical facts will help war-children by providing an opportunity to create an all-inclusive approach to the past. Personal experiences should be regarded as part of a large historical entity shadowed by war and where many political factors were at work in both Finland and Sweden. This means strengthening of the cognitive dimension discussed in Rüsen´s all-inclusive historical approach.
Resumo:
Various reasons, such as ethical issues in maintaining blood resources, growing costs, and strict requirements for safe blood, have increased the pressure for efficient use of resources in blood banking. The competence of blood establishments can be characterized by their ability to predict the volume of blood collection to be able to provide cellular blood components in a timely manner as dictated by hospital demand. The stochastically varying clinical need for platelets (PLTs) sets a specific challenge for balancing supply with requests. Labour has been proven a primary cost-driver and should be managed efficiently. International comparisons of blood banking could recognize inefficiencies and allow reallocation of resources. Seventeen blood centres from 10 countries in continental Europe, Great Britain, and Scandinavia participated in this study. The centres were national institutes (5), parts of the local Red Cross organisation (5), or integrated into university hospitals (7). This study focused on the departments of blood component preparation of the centres. The data were obtained retrospectively by computerized questionnaires completed via Internet for the years 2000-2002. The data were used in four original articles (numbered I through IV) that form the basis of this thesis. Non-parametric data envelopment analysis (DEA, II-IV) was applied to evaluate and compare the relative efficiency of blood component preparation. Several models were created using different input and output combinations. The focus of comparisons was on the technical efficiency (II-III) and the labour efficiency (I, IV). An empirical cost model was tested to evaluate the cost efficiency (IV). Purchasing power parities (PPP, IV) were used to adjust the costs of the working hours and to make the costs comparable among countries. The total annual number of whole blood (WB) collections varied from 8,880 to 290,352 in the centres (I). Significant variation was also observed in the annual volume of produced red blood cells (RBCs) and PLTs. The annual number of PLTs produced by any method varied from 2,788 to 104,622 units. In 2002, 73% of all PLTs were produced by the buffy coat (BC) method, 23% by aphaeresis and 4% by the platelet-rich plasma (PRP) method. The annual discard rate of PLTs varied from 3.9% to 31%. The mean discard rate (13%) remained in the same range throughout the study period and demonstrated similar levels and variation in 2003-2004 according to a specific follow-up question (14%, range 3.8%-24%). The annual PLT discard rates were, to some extent, associated with production volumes. The mean RBC discard rate was 4.5% (range 0.2%-7.7%). Technical efficiency showed marked variation (median 60%, range 41%-100%) among the centres (II). Compared to the efficient departments, the inefficient departments used excess labour resources (and probably) production equipment to produce RBCs and PLTs. Technical efficiency tended to be higher when the (theoretical) proportion of lost WB collections (total RBC+PLT loss) from all collections was low (III). The labour efficiency varied remarkably, from 25% to 100% (median 47%) when working hours were the only input (IV). Using the estimated total costs as the input (cost efficiency) revealed an even greater variation (13%-100%) and overall lower efficiency level compared to labour only as the input. In cost efficiency only, the savings potential (observed inefficiency) was more than 50% in 10 departments, whereas labour and cost savings potentials were both more than 50% in six departments. The association between department size and efficiency (scale efficiency) could not be verified statistically in the small sample. In conclusion, international evaluation of the technical efficiency in component preparation departments revealed remarkable variation. A suboptimal combination of manpower and production output levels was the major cause of inefficiency, and the efficiency did not directly relate to production volume. Evaluation of the reasons for discarding components may offer a novel approach to study efficiency. DEA was proven applicable in analyses including various factors as inputs and outputs. This study suggests that analytical models can be developed to serve as indicators of technical efficiency and promote improvements in the management of limited resources. The work also demonstrates the importance of integrating efficiency analysis into international comparisons of blood banking.
Resumo:
Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.
Resumo:
The matrix of blood is a liquid plasma that transports molecules and blood cells within vessels lined by endothelial cells. High-mobility group B1 (HMGB1) is a protein expressed in blood cells. Under normal circumstances, HMGB1 is virtually absent from plasma, but during inflammation or trauma its level in plasma is increased. In resting and quiescent cells, HMGB1 is usually localized in the intracellular compartment, with the exception of motile cells that express HMGB1 on their outer surface to mediate cell migration. During cell transformation or immune cell activation HMGB1 can be actively secreted outside of the cell. Further, when a cell is damaged, HMGB1 can passively leak into extracellular environment. Extracellular HMGB1 can then participate in regulation of the immune response and under some conditions it can mediate lethality in systemic inflammatory response. The aim of this study was to evaluate the expression and functions of HMGB1 in cells of the vascular system and to investigate the prognostic value of circulating HMGB1 in severe sepsis and septic shock. HMGB1 was detected in platelets, leukocytes, and endothelial cells. HMGB1 was released from platelets and leukocytes, and it was found to mediate their adhesive and migratory functions. During severe infections the plasma levels of HMGB1 were elevated; however, no direct correlation with lethality was found. Further, the analysis of proinflammatory mechanisms suggested that HMGB1 forms complexes with other molecules to activate the immune system. In conclusion, HMGB1 is expressed in the cells of the vascular system, and it participates in inflammatory mechanisms by activating platelets and leukocytes and by mediating monocyte migration.
Resumo:
Kidney transplantation (Tx) is the treatment of choice for end stage renal disease. Immunosuppressive medications are given to prevent an immunological rejection of the transplant. However, immunosuppressive drugs increase e.g. the risk of infection, cancer or nephrotoxicity. A major genetic contributors to immunological acceptance of the graft are human leukocyte antigen (HLA) genes. Also other non-HLA gene polymorphisms may predict the future risk of complications before Tx, possibly enabling individualised immunotherapy. Graft function after Tx is monitored using non-specific clinical symptoms and laboratory markers. The definitive diagnosis of graft rejection however relies on a biopsy of the graft. In the acute rejection (AR) diagnostics there is a need for an alternative to biopsy that would be an easily repeatable and simple method for regular use. Frequent surveillance of acute or subclinical rejection (SCR) may improve long-term function. In this thesis, associations between cytokine and thrombosis associated candidate genes and the outcome of kidney Tx were studied. Cytotoxic and co-stimulatory T lymphocyte molecule gene expression biomarkers for the diagnosis of the AR and the SCR were also investigated. We found that polymorphisms in the cytokine genes tumor necrosis factor and interleukin 10 (IL10) of the recipients were associated with AR. In addition, certain IL10 gene polymorphisms of the donors were associated with the incidence of cytomegalovirus infection and occurrence of later infection in a subpopulation of recipients. Further, polymorphisms in genes related to the risk of thrombosis and those of certain cytokines were not associated with the occurrence of thrombosis, infarction, AR or graft survival. In the study of biomarkers for AR, whole blood samples were prospectively collected from adult kidney Tx patients. With real-time quantitative PCR (RT-QPCR) gene expression quantities of CD154 and ICOS differentiated the patients with AR from those without, but not from the patients with other causes of graft dysfunction. Biomarkers for SCR were studied in paediatric kidney Tx patients. We used RT-QPCR to quantify the gene expression of immunological candidate genes in a low-density array format. In addition, we used RT-QPCR to validate the results of the microarray analysis. No gene marker differentiated patients with SCR from those without SCR. This research demonstrates the lack of robust markers among polymorphisms or biomarkers in investigated genes that could be included in routine analysis in a clinical laboratory. In genetic studies, kidney Tx can be regarded as a complex trait, i.e. several environmental and genetic factors may determine its outcome. A number of currently unknown genetic factors probably influence the results of Tx.
Resumo:
High quality of platelet analytics requires specialized knowledge and skills. It was applied to analyze platelet activation and aggregation responses in a prospective controlled study of patients with Finnish type of amyloidosis. The 20 patients with AGel amyloidosis displayed a delayed and more profound platelet shape change than healthy siblings and healthy volunteers, which may be related to altered fragmentation of mutated gelsolin during platelet activation. Alterations in platelet shape change have not been reported in association with platelet disorders. In the rare Bernard-Soulier syndrome with Asn45Ser mutation of glycoprotein (GP) IX, the diagnostic defect in the expression of GPIb-IX-V complex was characterized in seven Finnish patients, also an internationally exceptionally large patient series. When measuring thrombopoietin in serial samples of amniotic fluid and cord blood of 15 pregnant women with confirmed or suspected fetal alloimmune thrombocytopenia, the lower limit of detection could be extended. The results approved that thrombopoietin is present already in amniotic fluid. The application of various non-invasive means for diagnosing thrombocytopenia (TP) revealed that techniques for estimating the proportion of young, i.e. large platelets, such as direct measurement of reticulated platelets and the mean platelet size, would be useful for evaluating platelet kinetics in a given patient. Due to different kinetics between thrombopoietin and increase of young platelets in circulation, these measurements may have most predictive value when measured from simultaneous samples. Platelet autoantibodies were present not only in isolated autoimmune TP but also in patients without TP where disappearance of platelets might be compensated by increased production. The autoantibodies may also persist after TP has been cured. Simultaneous demonstration of increased young platelets (or increased mean platelet volume) in peripheral blood and the presence of platelet associated IgG specificities to major glycoproteins (GPIb-IX and GPIIb-IIIa) may be considered diagnostic for autoimmune TP. Measurement of a soluble marker as a sign of thrombin activation and proceeding deterioration of platelet components was applied to analyze the alterations under several stress factors (storage, transportation and lack of continuous shaking under controlled conditions) of platelet products. The GPV measured as a soluble factor in platelet storage medium showed good correlation with an array of other measurements commonly applied in characterization of stored platelets. The benefits of measuring soluble analyte in a quantitative assay were evident.
Resumo:
Cord blood is a well-established alternative to bone marrow and peripheral blood stem cell transplantation. To this day, over 400 000 unrelated donor cord blood units have been stored in cord blood banks worldwide. To enable successful cord blood transplantation, recent efforts have been focused on finding ways to increase the hematopoietic progenitor cell content of cord blood units. In this study, factors that may improve the selection and quality of cord blood collections for banking were identified. In 167 consecutive cord blood units collected from healthy full-term neonates and processed at a national cord blood bank, mean platelet volume (MPV) correlated with the numbers of cord blood unit hematopoietic progenitors (CD34+ cells and colony-forming units); this is a novel finding. Mean platelet volume can be thought to represent general hematopoietic activity, as newly formed platelets have been reported to be large. Stress during delivery is hypothesized to lead to the mobilization of hematopoietic progenitor cells through cytokine stimulation. Accordingly, low-normal umbilical arterial pH, thought to be associated with perinatal stress, correlated with high cord blood unit CD34+ cell and colony-forming unit numbers. The associations were closer in vaginal deliveries than in Cesarean sections. Vaginal delivery entails specific physiological changes, which may also affect the hematopoietic system. Thus, different factors may predict cord blood hematopoietic progenitor cell numbers in the two modes of delivery. Theoretical models were created to enable the use of platelet characteristics (mean platelet volume) and perinatal factors (umbilical arterial pH and placental weight) in the selection of cord blood collections with high hematopoietic progenitor cell counts. These observations could thus be implemented as a part of the evaluation of cord blood collections for banking. The quality of cord blood units has been the focus of several recent studies. However, hemostasis activation during cord blood collection is scarcely evaluated in cord blood banks. In this study, hemostasis activation was assessed with prothrombin activation fragment 1+2 (F1+2), a direct indicator of thrombin generation, and platelet factor 4 (PF4), indicating platelet activation. Altogether three sample series were collected during the set-up of the cord blood bank as well as after changes in personnel and collection equipment. The activation decreased from the first to the subsequent series, which were collected with the bank fully in operation and following international standards, and was at a level similar to that previously reported for healthy neonates. As hemostasis activation may have unwanted effects on cord blood cell contents, it should be minimized. The assessment of hemostasis activation could be implemented as a part of process control in cord blood banks. Culture assays provide information about the hematopoietic potential of the cord blood unit. In processed cord blood units prior to freezing, megakaryocytic colony growth was evaluated in semisolid cultures with a novel scoring system. Three investigators analyzed the colony assays, and the scores were highly concordant. With such scoring systems, the growth potential of various cord blood cell lineages can be assessed. In addition, erythroid cells were observed in liquid cultures of cryostored and thawed, unseparated cord blood units without exogenous erythropoietin. This was hypothesized to be due to the erythropoietic effect of thrombopoietin, endogenous erythropoietin production, and diverse cell-cell interactions in the culture. This observation underscores the complex interactions of cytokines and supporting cells in the heterogeneous cell population of the thawed cord blood unit.
Resumo:
Factor V Leiden (FV Leiden) is the most common inherited thrombophilia in Caucasians increasing the risk for venous thrombosis. Its prevalence in Finland is 2-3%. FV Leiden has also been associated with several pregnancy complications. However, the importance of FV Leiden as their risk factor is unclear. The aim of the study was to assess FV Leiden as a risk factor for pregnancy complications in which prothrombotic mechanisms may play a part. Specifically, the study aimed to assess the magnitude of the risk, if any, associated with FV Leiden for pregnancy-associated venous thrombosis, pre-eclampsia, unexplained stillbirth, and preterm birth. The study was conducted as a nested case-control study within a fixed cohort of 100,000 consecutive pregnant women in Finland. The study was approved by the ethics committee of the Finnish Red Cross Blood Service and by the Ministry of Social Affairs and Health. All participants gave written informed consent. Cases and controls were identified by using national registers. The diagnoses of the 100,000 women identified from the National Register of Blood Group and Blood Group Antibodies of Pregnant Women were obtained from the National Hospital Discharge Register. Participants gave blood samples for DNA tests and filled in questionnaires. The medical records of the participants were reviewed in 49 maternity hospitals in Finland. Genotyping was performed in the Finnish Genome Center. When evaluating pregnancy-associated venous thrombosis (34 cases, 641 controls), FV Leiden was associated with 11-fold risk (OR 11.6, 95% CI 3.6-33.6). When only analyzing women with first venous thrombosis, the risk was 6-fold (OR 5.8, 95% CI 1.6-21.8). The risk was increased by common risk factors, the risk being highest in women with FV Leiden and pre-pregnancy BMI over 30 kg/m2 (75-fold), and in women with FV Leiden and age over 35 years (60-fold). When evaluating pre-eclampsia (248 cases, 679 controls), FV Leiden was associated with a trend of increased risk (OR 1.7, 95% CI 0.8-3.9), but the association was not statistically significant. When evaluating unexplained stillbirth (44 cases, 776 controls), FV Leiden was associated with over 3-fold risk (OR 3.8, 95% CI 1.2-11.6). When evaluating preterm birth (324 cases, 752 controls), FV Leiden was associated with over 2-fold risk (OR 2.4, 95% CI 1.3-4.6). FV Leiden was especially associated with late preterm birth (32-36 weeks of gestation), but not with early preterm birth (< 32 weeks of gestation). The results of this large population-based study can be generalized to Finnish women with pregnancies continuing beyond first trimester, and may be applied to Caucasian women in populations with similar prevalence of FV Leiden and high standard prenatal care.
Resumo:
We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
Resumo:
We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
Resumo:
We present a measurement of the $WW+WZ$ production cross section observed in a final state consisting of an identified electron or muon, two jets, and missing transverse energy. The measurement is carried out in a data sample corresponding to up to 4.6~fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 1.96$ TeV collected by the CDF II detector. Matrix element calculations are used to separate the diboson signal from the large backgrounds. The $WW+WZ$ cross section is measured to be $17.4\pm3.3$~pb, in agreement with standard model predictions. A fit to the dijet invariant mass spectrum yields a compatible cross section measurement.
Resumo:
A measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{{\rm s}}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb$^{-1}$ is: $\sigma_{\ttbar}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.
Resumo:
We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.
Resumo:
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using a data sample corresponding to 1.7/fb of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct ttbar events in the lepton+jets channel. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets. We measure a production cross section of 7.8 +/- 2.4 (stat) +/- 1.6 (syst) +/- 0.5 (lumi) pb. This is the first measurement of the top pair production cross section with soft electron tags in Run II of the Tevatron.
Resumo:
This paper reports a measurement of the cross section for the pair production of top quarks in ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF II detector in a set of runs with a total integrated luminosity of 1.1 fb^{-1}. The cross section is measured in the dilepton channel, the subset of ttbar events in which both top quarks decay through t -> Wb -> l nu b where l = e, mu, or tau. The lepton pair is reconstructed as one identified electron or muon and one isolated track. The use of an isolated track to identify the second lepton increases the ttbar acceptance, particularly for the case in which one W decays as W -> tau nu. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b-jet. We present the results of measurements performed with and without the request of an identified b-jet. The former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a likelihood. The result is sigma_{ttbar} = 9.6 +/- 1.2 (stat.) -0.5 +0.6 (sys.) +/- 0.6 (lum.) pb, assuming a branching ratio of BR(W -> ell nu) = 10.8% and a top mass of m_t = 175 GeV/c^2.