2 resultados para Brake lamps.

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research the technical functionality, quality and demands made on endurance runners` running suits in winter conditions were studied. The aim was also to find out how smart clothing and wearable technology are adopted in endurance runners` practise. Referring to previous studies the subject was approached in the theoretical part by studying the profile of endurance running, sports wear and the technology to wear as well as the smart clothing from the point of view of endurance running. The basis of subject was the interest of smart materials and the connection between technical structures and functionality. In the science of handicrafts smart clothing is rarely researched which made it even more interesting for the author. This research was carried out by the principles of the usability research. Usability means the suitability of product to its intended meaning. In the research both quantitative and qualitative methods were used. Researched persons were active competitive long-distance runners and also the long-distance runners doing it as a hobby, 35 male and 12 female runners. User information was gathered by the internet forms which mainly was based on the multiple choices but also included few open questions. Gathered information was considered by using both quantitative and content analysing methods. The functional long-distance running practice suit in winter conditions consisted of layered look which considered the possibilities of functional and smart materials. The Practise suit was humid transformable, easy care and light also comfortable to wear. These suits were hoped to be more functional than the current ones. The future running suit was described to not to feel or notice during running. It will not be too tight or sweltering. The functional abilities of clothing materials were believed to be developed further more. Even if the new technical materials are adopted for the running suits the technology to wear is not even though half of the researched runners used pulse indicators. The runners hoped the technology to wear to change more invisible and easier to use. Some of the runners wished the technology to wear to be integrated straight to the clothes which would reduce the number of devices carried with while running. The rare use of Polar Adidas AdiStar Fusion practise system and some other similar systems for endurance running was surprising. According to the results the smart clothing would not make a big brake through in the near future. In the point of view of the researched persons developing of clothing materials was a good and necessary thing, but integrating too much technology to the hobby smears the main purpose of sports and focuses wrongly on the metres and others minors .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.