3 resultados para Biomarker, GIS

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road transport and infrastructure has a fundamental meaning for the developing world. Poor quality and inadequate coverage of roads, lack of maintenance operations and outdated road maps continue to hinder economic and social development in the developing countries. This thesis focuses on studying the present state of road infrastructure and its mapping in the Taita Hills, south-east Kenya. The study is included as a part of the TAITA-project by the Department of Geography, University of Helsinki. The road infrastructure of the study area is studied by remote sensing and GIS based methodology. As the principal dataset, true colour airborne digital camera data from 2004, was used to generate an aerial image mosaic of the study area. Auxiliary data includes SPOT satellite imagery from 2003, field spectrometry data of road surfaces and relevant literature. Road infrastructure characteristics are interpreted from three test sites using pixel-based supervised classification, object-oriented supervised classifications and visual interpretation. Road infrastructure of the test sites is interpreted visually from a SPOT image. Road centrelines are then extracted from the object-oriented classification results with an automatic vectorisation process. The road infrastructure of the entire image mosaic is mapped by applying the most appropriate assessed data and techniques. The spectral characteristics and reflectance of various road surfaces are considered with the acquired field spectra and relevant literature. The results are compared with the experimented road mapping methods. This study concludes that classification and extraction of roads remains a difficult task, and that the accuracy of the results is inadequate regardless of the high spatial resolution of the image mosaic used in this thesis. Visual interpretation, out of all the experimented methods in this thesis is the most straightforward, accurate and valid technique for road mapping. Certain road surfaces have similar spectral characteristics and reflectance values with other land cover and land use. This has a great influence for digital analysis techniques in particular. Road mapping is made even more complicated by rich vegetation and tree canopy, clouds, shadows, low contrast between roads and surroundings and the width of narrow roads in relation to the spatial resolution of the imagery used. The results of this thesis may be applied to road infrastructure mapping in developing countries on a more general context, although with certain limits. In particular, unclassified rural roads require updated road mapping schemas to intensify road transport possibilities and to assist in the development of the developing world.