2 resultados para Bellingshausen Sea, ridge-groove province: flattish groove
em Helda - Digital Repository of University of Helsinki
Resumo:
Käsitteillä svengi ja groove viitataan useimmiten kappaleen tietyn tulkinnan eli esityksen pääasiallisesti rytmisten ominaisuuksien laatuun. Tutkimuksen tavoitteena on kehittää musiikin rytmiikkaan ja hienorytmiikkaan keskittyviä musiikkikognitiivisia analyysimetodeja, joita soveltamalla nämä ominaisuudet voitaisiin tavoittaa. Käsitteiden monitulkintaisuus, joka tuodaan esiin tutkimuksen alussa aiheuttaa tälle monenlaisia haasteita. -- Tutkimuksen rytmiikkaan keskittyviä analyysimetodeja sovellettaessa musiikkia tarkastellaan tietystä esityksestä tehdyn nuottiesityksen, transkription välityksellä. Hienorytmisiä analyysimetodeja käytettäessä musiikkia tarkastellaan esitysten instrumenttiosuuksien sävelten alukehetkien tarkkojen sijaintien kautta. Alukehetket poimitaan erilaisin automaattisin ja manuaalisin tietokoneavusteisin menetelmin äänitteiltä. Tutkimuksessa tarkastellaan musiikissa esiintyviä ilmiöitä myös laajemmalla, musiikin havaitsemiseen ja tuottamiseen yleisesti liittyvällä musiikkikognition tasolla. Tärkeänä näkökulmana musiikin rytmiikan esitetään jakautuvan kognitiivisesti karkeampaan tekstuaaliseen rytmiikkaan ja tätä hienoisesti varioivaan ei-tekstuaaliseen hienorytmiikkaan. Analyysiosuudessa kehitettyjä metodeja sovelletaan seuraavien kappaleiden soolo-osuuksiin: Miles Davis – 'Freddie Freeloader' (1959), James Brown – 'Doing it to Death' (1973) ja Led Zeppelin – 'Stairway to Heaven' (1971). Kappaleet edustavat tutkimuksessa jazz-, funk- ja rock-tyylilajeja. Analyysi tarkastelee ja vertailee kappaleiden metristä stabiiliutta, instrumenttiosuuksien suhdetta pulssin iskuihin, rytmiikan kolmimuunteisuutta, soolojen metrisiä painopisteitä, soolojen rytmistä tiheyttä sekä tempojen muutoksia. -- Kehitetyt menetelmät osoittautuvat kaikki käyttökelpoisiksi. Kappaleille yhteiseksi piirteeksi paljastuu instrumenttiosuuksien säännönmukainen sijoittuminen pulssin iskuihin nähden kappaleiden sisällä. Kappaleiden välillä eri instrumentit sijoittuvat kuitenkin pulssin ympärille eroavin tavoin, jonka oletetaan johtuvan ennen kaikkea tyylilajien eroista. Tempot pysyvät kappaleissa varsin muuttumattomina. Jatkotutkimuksen kannalta mielenkiintoisia näkymiä ovat muun muassa metodien laajempi soveltaminen, automaattisten menetelmien kehittäminen
Resumo:
Earth s ice shelves are mainly located in Antarctica. They cover about 44% of the Antarctic coastline and are a salient feature of the continent. Antarctic ice shelf melting (AISM) removes heat from and inputs freshwater into the adjacent Southern Ocean. Although playing an important role in the global climate, AISM is one of the most important components currently absent in the IPCC climate model. In this study, AISM is introduced into a global sea ice-ocean climate model ORCA2-LIM, following the approach of Beckmann and Goosse (2003; BG03) for the thermodynamic interaction between the ice shelf and ocean. This forms the model ORCA2-LIM-ISP (ISP: ice shelf parameterization), in which not only all the major Antarctic ice shelves but also a number of minor ice shelves are included. Using these two models, ORCA2-LIM and ORCA2-LIM-ISP, the impact of addition of AISM and increasing AISM have been investigated. Using the ORCA2-LIM model, numerical experiments are performed to investigate the sensitivity of the polar sea ice cover and the Antarctic Circumpolar Current (ACC) transport through Drake Passage (DP) to the variations of three sea ice parameters, namely the thickness of newly formed ice in leads (h0), the compressive strength of ice (P*), and the turning angle in the oceanic boundary layer beneath sea ice (θ). It is found that the magnitudes of h0 and P* have little impact on the seasonal sea ice extent, but lead to large changes in the seasonal sea ice volume. The variation in turning angle has little impact on the sea ice extent and volume in the Arctic but tends to reduce them in the Antarctica when ignored. The magnitude of P* has the least impact on the DP transport, while the other two parameters have much larger influences. Numerical results from ORCA2-LIM and ORCA2-LIM-ISP are analyzed to investigate how the inclusion of AISM affects the representation of the Southern Ocean hydrography. Comparisons with data from the World Ocean Circulation Experiment (WOCE) show that the addition of AISM significantly improves the simulated hydrography. It not only warms and freshens the originally too cold and too saline bottom water (AABW), but also warms and enriches the salinity of the originally too cold and too fresh warm deep water (WDW). Addition of AISM also improves the simulated stratification. The close agreement between the simulation with AISM and the observations suggests that the applied parameterization is an adequate way to include the effect of AISM in a global sea ice-ocean climate model. We also investigate the models capability to represent the sea ice-ocean system in the North Atlantic Ocean and the Arctic regions. Our study shows both models (with and without AISM) can successfully reproduce the main features of the sea ice-ocean system. However, both tend to overestimate the ice flux through the Nares Strait, produce a lower temperature and salinity in the Hudson Bay, Baffin Bay and Davis Strait, and miss the deep convection in the Labrador Sea. These deficiencies are mainly attributed to the artificial enlargement of the Nares Strait in the model. In this study, the impact of increasing AISM on the global sea ice-ocean system is thoroughly investigated. This provides a first idea regarding changes induced by increasing AISM. It is shown that the impact of increasing AISM is global and most significant in the Southern Ocean. There, increasing AISM tends to freshen the surface water, to warm the intermediate and deep waters, and to freshen and warm the bottom water. In addition, increasing AISM also leads to changes in the mixed layer depths (MLD) in the deep convection sites in the Southern Ocean, deepening in the Antarctic continental shelf while shoaling in the ACC region. Furthermore, increasing AISM influences the current system in the Southern Ocean. It tends to weaken the ACC, and strengthen the Antarctic coastal current (ACoC) as well as the Weddell Gyre and the Ross Gyre. In addition to the ocean system, increasing AISM also has a notable impact on the Antarctic sea ice cover. Due to the cooling of seawater, sea ice concentration and thickness generally become higher. In austral winter, noticeable increases in sea ice concentration mainly take place near the ice edge. In regards with sea ice thickness, large increases are mainly found along the coast of the Weddell Sea, the Bellingshausen and Amundsen Seas, and the Ross Sea. The overall thickening of sea ice leads to a larger volume of sea ice in Antarctica. In the North Atlantic, increasing AISM leads to remarkable changes in temperature, salinity and density. The water generally becomes warmer, more saline and denser. The most significant warming occurs in the subsurface layer. In contrast, the maximum salinity increase is found at the surface. In addition, the MLD becomes larger along the Greenland-Scotland-Iceland ridge. Global teleconnections due to AISM are studied. The AISM signal is transported with the surface current: the additional freshwater from AISM tends to enhance the northward spreading of the surface water. As a result, more warm and saline water is transported from the tropical region to the North Atlantic Ocean, resulting in warming and salt enrichment there. It would take about 30 40 years to establish a systematic noticeable change in temperature, salinity and MLD in the North Atlantic Ocean according to this study. The changes in hydrography due to increasing AISM are compared with observations. Consistency suggests that increasing AISM is highly likely a major contributor to the recent observed changes in the Southern Ocean. In addition, the AISM might contribute to the salinity contrast between the North Atlantic and North Pacific, which is important for the global thermohaline circulation.