2 resultados para Basalt.
em Helda - Digital Repository of University of Helsinki
Resumo:
The blood vascular system is a closed circulatory system, responsible for delivering oxygen and nutrients to the tissues. In contrast, the lymphatic vascular system is a blind-ended transport system that collects the extravasated tissue fluid from the capillary beds, and transports it back to the blood circulation. Failure in collecting or transporting the lymph, due to defects in the lymphatic vasculature, leads to accumulation of extra fluid in the tissues, and consequently to tissue swelling lymphedema. The two vascular systems function in concert. They are structurally related, but their development is regulated by separate, however overlapping, molecular mechanisms. During embryonic development, blood vessels are formed by vasculogenesis and angiogenesis, processes largely mediated by members of the vascular endothelial growth factor (VEGF) family and their tyrosine kinase receptors. The lymphatic vessels are formed after the cardiovascular system is already functional. This process, called lymphangiogenesis, is controlled by distinct members of the VEGF family, together with the transcription factors Prox1 and Sox18. After the primary formation of the vessels, the vasculature needs to mature and remodel into a functional network of hierarchically organized vessels: the blood vasculature into arteries, capillaries and veins; and the lymphatic vasculature into lymphatic capillaries, responsible for the uptake of the extravasated fluid from the tissues, and collecting vessels, responsible for the transport of the lymph back to the blood circulation. A major event in the maturation of the lymphatic vasculature is the formation of collecting lymphatic vessels. These vessels are characterized by the presence of intraluminal valves, preventing backflow of the lymph, and a sparse coverage of smooth muscle cells, which help in pumping the lymph forward. In our study, we have characterized the molecular and morphological events leading to formation of collecting lymphatic vessels. We found that this process is regulated cooperatively by the transcription factors Foxc2 and NFATc1. Mice lacking either Foxc2 or active NFATc1 fail to remodel the primary lymphatic plexus into functional lymphatic capillaries and collecting vessels. The resulting vessels lack valves, display abnormal expression of lymphatic molecules, and are hyperplastic. Moreover, the lymphatic capillaries show aberrant sprouting, and are abnormally covered with smooth muscle cells. In humans, mutations in FOXC2 lead to Lymphedema-Distichiasis (LD), a disabling disease characterized by swelling of the limbs due to insufficient lymphatic function. Our results from Foxc2 mutant mice and LD patients indicate that the underlying cause for lymphatic failure in LD is agenesis of collecting lymphatic valves and aberrant recruitment of periendothelial cells and basal lamina components to lymphatic capillaries. Furthermore, we show that liprin β1, a poorly characterized member of the liprin family of cytoplasmic proteins, is highly expressed in lymphatic endothelial cells in vivo, and is required for lymphatic vessel integrity. These data highlight the important role of FOXC2, NFATc1 and liprin β1 in the regulation of lymphatic development, specifically in the maturation and formation of the collecting lymphatic vessels. As damage to collecting vessels is a major cause of lymphatic dysfunction in humans, our results also suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.
Resumo:
This study provides insights into the composition and origin of ferropicrite dikes (FeOtot = 13 17 wt. %; MgO = 13 19 wt. %) and associated meimechite, picrite, picrobasalt, and basalt dikes found at Vestfjella, western Dronning Maud Land, Antarctica. The dikes crosscut Jurassic Karoo continental flood basalts (CFB) that were emplaced during the early stages of the breakup of the Gondwana supercontinent ~180 Ma ago. Selected samples (31 overall from at least eleven dikes) were analyzed for their mineral chemical, major element, trace element, and Sr, Nd, Pb, and Os isotopic compositions. The studied samples can be divided into two geochemically distinct types: (1) The depleted type (24 samples from at least nine dikes) is relatively depleted in the most incompatible elements and exhibits isotopic characteristics (e.g., initial εNd of +4.8 to +8.3 and initial 187Os/188Os of 0.1256 0.1277 at 180 Ma) similar to those of mid-ocean ridge basalts (MORB); (2) The enriched type (7 samples from at least two dikes) exhibits relatively enriched incompatible element and isotopic characteristics (e.g., initial εNd of +1.8 to +3.6 and initial 187Os/188Os of 0.1401 0.1425 at 180 Ma) similar to those of oceanic island basalts. Both magma types have escaped significant contamination by the continental crust. The depleted type is related to the main phase of Karoo magmatism and originated as highly magnesian (MgO up to 25 wt. %) partial melts at high temperatures (mantle potential temperature >1600 °C) and pressures (~5 6 GPa) from a sublithospheric, water-bearing, depleted peridotite mantle source. The enriched type sampled pyroxene-bearing heterogeneities that can be traced down to either recycled oceanic crust or melt-metasomatized portions of the sublithospheric or lithospheric mantle. The source of the depleted type represents a sublithospheric end-member source for many Karoo lavas and has subsequently been sampled by the MORBs of the Indian Ocean. These observations, together with the purported high temperatures, indicate that the Karoo CFBs were formed in an extensive melting episode caused mainly by internal heating of the upper mantle beneath the Gondwana supercontinent. My research supports the view that ferropicritic melts can be generated in several ways: the relative Fe-enrichment of mantle partial melts is most readily achieved by (1) relatively low degree of partial melting, (2) high pressure of partial melting, and (3) melting of enriched source components (e.g., pyroxenite and metasomatized peridotite). Ferropicritic whole-rock compositions could also result from accumulation, secondary alteration, and fractional crystallization, however, and caution is required when addressing the parental magma composition.