5 resultados para Baking.

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of (1→3),(1→4)-β-D-glucans of oat bran, whole-grain oats and barley and processed foods were analysed. Various methods of hydrolysis of β-glucan, the content of insoluble fibre of whole grains of oats and barley and the solution behaviour of oat and barley β-glucans were studied. The isolated soluble β-glucans of oat bran and whole-grain oats and barley were hydrolysed with lichenase, an enzyme specific for (1→3),(1→4)-β-D-β-glucans. The amounts of oligosaccharides produced from bran were analysed with capillary electrophoresis and those from whole-grains with high-performance anion-exchange chromatography with pulse-amperometric detection. The main products were 3-O-β-cellobiosyl-D-glucose and 3-O-β-cellotriosyl-D-glucose, the oligosaccharides which have a degree of polymerisation denoted by DP3 and DP4. Small differences were detected between soluble and insoluble β-glucans and also between β-glucans of oats and barley. These differences can only be seen in the DP3:DP4 ratio which was higher for barley than for oat and also higher for insoluble than for soluble β-glucan. A greater proportion of barley β-glucan remained insoluble than of oat β-glucan. The molar masses of soluble β-glucans of oats and barley were the same as were those of insoluble β-glucans of oats and barley. To analyse the effects of cooking, baking, fermentation and drying, β-glucan was isolated from porridge, bread and fermentate and also from their starting materials. More β-glucan was released after cooking and less after baking. Drying decreased the extractability for bread and fermentate but increased it for porridge. Different hydrolysis methods of β-glucan were compared. Acid hydrolysis and the modified AOAC method gave similar results. The results of hydrolysis with lichenase gave higher recoveries than the other two. The combination of lichenase hydrolysis and high-performance anion-exchange chromatography with pulse-amperometric detection was found best for the analysis of β-glucan content. The content of insoluble fibre was higher for barley than for oats and the amount of β-glucan in the insoluble fibre fraction was higher for oats than for barley. The flow properties of both water and aqueous cuoxam solutions of oat and barley β-glucans were studied. Shear thinning was stronger for the water solutions of oat β-glucan than for barley β-glucan. In aqueous cuoxam shear thinning was not observed at the same concentration as in water but only with high concentration solutions. Then the viscosity of barley β-glucan was slightly higher than that of oat β-glucan. The oscillatory measurements showed that the crossover point of the G´ and G´´ curves was much lower for barley β-glucan than for oat β-glucan indicating a higher tendency towards solid-like behaviour for barley β-glucan than for oat β-glucan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines protein behaviours that occur during cereal fermentations. The focus is on the prolamin degradation in sourdoughs. The thesis also looks at what happens to the oat globulins during an oat bran acidification process. The cereal prolamins are unique proteins in many respects. The wheat prolamins (glutenins and gliadins) are responsible for the formation of the gluten that provides the viscoelastic properties to wheat doughs whereas the rye prolamins (secalins) are unable to develop gluten-like structures. In addition, many baking technological features, such as flavour, shelf-life and dough properties are affected by the protein degradation that might occur during processing. On the other hand, the prolamins contain protein structures that are harmful to gluten sensitive people. It is thus evident that the degradation of the prolamins in sourdough processes may be approached from various aspects. This thesis describes some of these approaches. Four different cereal fermentations were carried out. Wheat sourdough (WSD) and rye sourdough (RSD) fermentations represented traditional sourdoughs. A germinated-wheat sourdough (GWSD) was a novel sourdough type that was prepared using germinated wheat grains that had high and diverse proteolytic activities. The oat bran fermentation (OBF) represented a fermentation system that lacked functional cereal proteases. The high molecular weight glutenins and rye secalins were degraded during the WSD and RSD fermentations, respectively. It was noteworthy that in WSD only a very limited degradation of the gliadins occurred. The gliadins were, however, hydrolysed very extensively during the GWSD fermentation. No protein degradation was observable in the OBF system. Instead the acidification altered the solubility of the oat globulins and this finally led to their aggregation. This thesis confirms that the endogenous proteases of cereals hydrolyse cereal prolamins in sourdoughs. The thesis also shows that the proteolytic activity of the used cereal raw material determines the extent of proteolysis that occurs in sourdough. This means that bakers may adjust the protein degradation in their sourdoughs by selecting the raw material based on its proteolytic activity. The thesis also demonstrates that by using germinated grains, with high and diverse proteolytic activity in sourdough preparations, the prolamins can be extensively degraded. Whether such highly proteolytic food technology could be used to manufacture new gluten-free cereal-based products for gluten sensitive people remains to be solved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymes offer many advantages in industrial processes, such as high specificity, mild treatment conditions and low energy requirements. Therefore, the industry has exploited them in many sectors including food processing. Enzymes can modify food properties by acting on small molecules or on polymers such as carbohydrates or proteins. Crosslinking enzymes such as tyrosinases and sulfhydryl oxidases catalyse the formation of novel covalent bonds between specific residues in proteins and/or peptides, thus forming or modifying the protein network of food. In this study, novel secreted fungal proteins with sequence features typical of tyrosinases and sulfhydryl oxidases were iden-tified through a genome mining study. Representatives of both of these enzyme families were selected for heterologous produc-tion in the filamentous fungus Trichoderma reesei and biochemical characterisation. Firstly, a novel family of putative tyrosinases carrying a shorter sequence than the previously characterised tyrosinases was discovered. These proteins lacked the whole linker and C-terminal domain that possibly play a role in cofactor incorporation, folding or protein activity. One of these proteins, AoCO4 from Aspergillus oryzae, was produced in T. reesei with a production level of about 1.5 g/l. The enzyme AoCO4 was correctly folded and bound the copper cofactors with a type-3 copper centre. However, the enzyme had only a low level of activity with the phenolic substrates tested. Highest activity was obtained with 4-tert-butylcatechol. Since tyrosine was not a substrate for AoCO4, the enzyme was classified as catechol oxidase. Secondly, the genome analysis for secreted proteins with sequence features typical of flavin-dependent sulfhydryl oxidases pinpointed two previously uncharacterised proteins AoSOX1 and AoSOX2 from A. oryzae. These two novel sulfhydryl oxidases were produced in T. reesei with production levels of 70 and 180 mg/l, respectively, in shake flask cultivations. AoSOX1 and AoSOX2 were FAD-dependent enzymes with a dimeric tertiary structure and they both showed activity on small sulfhydryl compounds such as glutathione and dithiothreitol, and were drastically inhibited by zinc sulphate. AoSOX2 showed good stabil-ity to thermal and chemical denaturation, being superior to AoSOX1 in this respect. Thirdly, the suitability of AoSOX1 as a possible baking improver was elucidated. The effect of AoSOX1, alone and in combi-nation with the widely used improver ascorbic acid was tested on yeasted wheat dough, both fresh and frozen, and on fresh water-flour dough. In all cases, AoSOX1 had no effect on the fermentation properties of fresh yeasted dough. AoSOX1 nega-tively affected the fermentation properties of frozen doughs and accelerated the damaging effects of the frozen storage, i.e. giving a softer dough with poorer gas retention abilities than the control. In combination with ascorbic acid, AoSOX1 gave harder doughs. In accordance, rheological studies in yeast-free dough showed that the presence of only AoSOX1 resulted in weaker and more extensible dough whereas a dough with opposite properties was obtained if ascorbic acid was also used. Doughs containing ascorbic acid and increasing amounts of AoSOX1 were harder in a dose-dependent manner. Sulfhydryl oxidase AoSOX1 had an enhancing effect on the dough hardening mechanism of ascorbic acid. This was ascribed mainly to the produc-tion of hydrogen peroxide in the SOX reaction which is able to convert the ascorbic acid to the actual improver dehydroascorbic acid. In addition, AoSOX1 could possibly oxidise the free glutathione in the dough and thus prevent the loss of dough strength caused by the spontaneous reduction of the disulfide bonds constituting the dough protein network. Sulfhydryl oxidase AoSOX1 is therefore able to enhance the action of ascorbic acid in wheat dough and could potentially be applied in wheat dough baking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkielman kirjallisuuskatsauksessa tarkasteltiin kauran leivontateknologisia ominaisuuksia, entsyymiaktiivista leivontaa ja ruismaltaan hyödyntämistä vähägluteenisessa leivonnassa. Kokeellisessa osiossa tutkittiin ruismallashapantaikinasta valmistetun uutteen vaikutusta kaurataikinan viskositeettiin ja kauraleivän ominaisuuksiin. Työn tarkoituksena oli kehittää maultaan ja rakenteeltaan onnistunut rukiinmakuinen kauraleipä. Ruismaltaan entsyymien annettiin pilkkoa keliaakikolle haitallisia rukiin prolamiineja hapantaikinaprosessissa. Hapantaikinasta erotettiin uute sentrifugoimalla. Leivontakokeisiin käytettiin entsyymiaktiivista ja kuumentamalla inaktivoitua uutetta. Uutteella korvattiin taikinavettä 15, 25 ja 30 % (taikinan painosta). Leivonta toteutettiin miniatyyrikoossa, vuokaleivontana 20 g:n taikinapaloja käyttäen. Taikinoiden viskositeetti mitattiin tarkoituksena seurata beetaglukaanin hydrolyysiä. Rukiin makua mitattiin koulutetun raadin avulla. Happaman uutteen lisäys laski taikinan pH-arvoa noin 5,8:sta noin 4,4:ään. Entsyymiaktiivisen uutteen lisäys laski taikinan viskositeettia ja inaktivoitu uute puolestaan kasvatti sitä. Leipien sisus tiivistyi, jolloin mitatut sisuksen kovuudet kasvoivat uutteen lisäyksen myötä. Uutelisäys paransi leipien makua ja aromia. Uutteen vaikutuksesta leipien huokoset olivat pienempiä ja ne jakaantuivat tasaisemmin leipämatriisiin. Jos uutetta käytettiin inaktivoituna, leipien murenevuus kasvoi. Tutkimuksessa kehitetyn teknologian avulla oli mahdollista valmistaa hyvänlaatuinen, rukiinmakuinen kauraleipä myös ilman että uutteen entsyymit inaktivoitiin keittämällä. Tähän vaikutti ilmeisesti taikinan alhainen pH, joka inhiboi alfa-amylaasia, ja kauratärkkelyksen korkea liisteröitymislämpötila, jolloin entsyymien inaktivoituminen paiston aikana tapahtui ennen kuin tärkkelys tuli alttiiksi liialliselle pilkkoutumiselle. Tämä mahdollistaa uutteen käytön osana leivontaprosessia ilman inaktivointia. Hapantaikinafermentaatio osana gluteenitonta leivontaa havaittiin toimivaksi yhdistelmäksi, sillä se paransi leivän väriä, makua ja rakennetta. Myös leivän homeeton aika parani jo vähäisenkin uutelisäyksen vaikutuksesta. Näyttää siltä, että tämän teknologian avulla on mahdollista tuoda esille pitkään kaivattua rukiin makua vähägluteenisten kauraleipien valikoimassa. Laskennallisesti ja aiempiin tuloksiin tukeutuen, voitiin päätellä, että leivän prolamiinipitoisuudessa on mahdollista päästä tasolle 63,5 mg/kg, mutta jatkokehityksen avulla päästäisiin luultavasti vielä parempiin tuloksiin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

People with coeliac disease have to maintain a gluten-free diet, which means excluding wheat, barley and rye prolamin proteins from their diet. Immunochemical methods are used to analyse the harmful proteins and to control the purity of gluten-free foods. In this thesis, the behaviour of prolamins in immunological gluten assays and with different prolamin-specific antibodies was examined. The immunoassays were also used to detect residual rye prolamins in sourdough systems after enzymatic hydrolysis and wheat prolamins after deamidation. The aim was to characterize the ability of the gluten analysis assays to quantify different prolamins in varying matrices in order to improve the accuracy of the assays. Prolamin groups of cereals consist of a complex mixture of proteins that vary in their size and amino acid sequences. Two common characteristics distinguish prolamins from other cereal proteins. Firstly, they are soluble in aqueous alcohols, and secondly, most of the prolamins are mainly formed from repetitive amino acid sequences containing high amounts of proline and glutamine. The diversity among prolamin proteins sets high requirements for their quantification. In the present study, prolamin contents were evaluated using enzyme-linked immunosorbent assays based on ω- and R5 antibodies. In addition, assays based on A1 and G12 antibodies were used to examine the effect of deamidation on prolamin proteins. The prolamin compositions and the cross-reactivity of antibodies with prolamin groups were evaluated with electrophoretic separation and Western blotting. The results of this thesis research demonstrate that the currently used gluten analysis methods are not able to accurately quantify barley prolamins, especially when hydrolysed or mixed in oats. However, more precise results can be obtained when the standard more closely matches the sample proteins, as demonstrated with barley prolamin standards. The study also revealed that all of the harmful prolamins, i.e. wheat, barley and rye prolamins, are most efficiently extracted with 40% 1-propanol containing 1% dithiothreitol at 50 °C. The extractability of barley and rye prolamins was considerably higher with 40% 1-propanol than with 60% ethanol, which is typically used for prolamin extraction. The prolamin levels of rye were lowered by 99.5% from the original levels when an enzyme-active rye-malt sourdough system was used for prolamin degradation. Such extensive degradation of rye prolamins suggest the use of sourdough as a part of gluten-free baking. Deamidation increases the diversity of prolamins and improves their solubility and ability to form structures such as emulsions and foams. Deamidation changes the protein structure, which has consequences for antibody recognition in gluten analysis. According to the resuts of the present work, the analysis methods were not able to quantify wheat gluten after deamidation except at very high concentrations. Consequently, deamidated gluten peptides can exist in food products and remain undetected, and thus cause a risk for people with gluten intolerance. The results of this thesis demonstrate that current gluten analysis methods cannot accurately quantify prolamins in all food matrices. New information on the prolamins of rye and barley in addition to wheat prolamins is also provided in this thesis, which is essential for improving gluten analysis methods so that they can more accurately quantify prolamins from harmful cereals.