6 resultados para BAND ALIGNMENT
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.
Resumo:
The dissertation deals with remote narrowband measurements of the electromagnetic radiation emitted by lightning flashes. A lightning flash consists of a number of sub-processes. The return stroke, which transfers electrical charge from the thundercloud to to the ground, is electromagnetically an impulsive wideband process; that is, it emits radiation at most frequencies in the electromagnetic spectrum, but its duration is only some tens of microseconds. Before and after the return stroke, multiple sub-processes redistribute electrical charges within the thundercloud. These sub-processes can last for tens to hundreds of milliseconds, many orders of magnitude longer than the return stroke. Each sub-process causes radiation with specific time-domain characteristics, having maxima at different frequencies. Thus, if the radiation is measured at a single narrow frequency band, it is difficult to identify the sub-processes, and some sub-processes can be missed altogether. However, narrowband detectors are simple to design and miniaturize. In particular, near the High Frequency band (High Frequency, 3 MHz to 30 MHz), ordinary shortwave radios can, in principle, be used as detectors. This dissertation utilizes a prototype detector which is essentially a handheld AM radio receiver. Measurements were made in Scandinavia, and several independent data sources were used to identify lightning sub-processes, as well as the distance to each individual flash. It is shown that multiple sub-processes radiate strongly near the HF band. The return stroke usually radiates intensely, but it cannot be reliably identified from the time-domain signal alone. This means that a narrowband measurement is best used to characterize the energy of the radiation integrated over the whole flash, without attempting to identify individual processes. The dissertation analyzes the conditions under which this integrated energy can be used to estimate the distance to the flash. It is shown that flash-by-flash variations are large, but the integrated energy is very sensitive to changes in the distance, dropping as approximately the inverse cube root of the distance. Flashes can, in principle, be detected at distances of more than 100 km, but since the ground conductivity can vary, ranging accuracy drops dramatically at distances larger than 20 km. These limitations mean that individual flashes cannot be ranged accurately using a single narrowband detector, and the useful range is limited to 30 kilometers at the most. Nevertheless, simple statistical corrections are developed, which enable an accurate estimate of the distance to the closest edge of an active storm cell, as well as the approach speed. The results of the dissertation could therefore have practical applications in real-time short-range lightning detection and warning systems.
Resumo:
ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.