2 resultados para Average model

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical models, used for atmospheric research, weather prediction and climate simulation, describe the state of the atmosphere over the heterogeneous surface of the Earth. Several fundamental properties of atmospheric models depend on orography, i.e. on the average elevation of land over a model area. The higher is the models' resolution, the more the details of orography directly influence the simulated atmospheric processes. This sets new requirements for the accuracy of the model formulations with respect to the spatially varying orography. Orography is always averaged, representing the surface elevation within the horizontal resolution of the model. In order to remove the smallest scales and steepest slopes, the continuous spectrum of orography is normally filtered (truncated) even more, typically beyond a few gridlengths of the model. This means, that in the numerical weather prediction (NWP) models, there will always be subgridscale orography effects, which cannot be explicitly resolved by numerical integration of the basic equations, but require parametrization. In the subgrid-scale, different physical processes contribute in different scales. The parametrized processes interact with the resolved-scale processes and with each other. This study contributes to building of a consistent, scale-dependent system of orography-related parametrizations for the High Resolution Limited Area Model (HIRLAM). The system comprises schemes for handling the effects of mesoscale (MSO) and small-scale (SSO) orographic effects on the simulated flow and a scheme of orographic effects on the surface-level radiation fluxes. Representation of orography, scale-dependencies of the simulated processes and interactions between the parametrized and resolved processes are discussed. From the high-resolution digital elevation data, orographic parameters are derived for both momentum and radiation flux parametrizations. Tools for diagnostics and validation are developed and presented. The parametrization schemes applied, developed and validated in this study, are currently being implemented into the reference version of HIRLAM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1, and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78 % of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. We expect this latter number may be an underestimate due to the low high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4. Sensitivity analysis showed a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions. The large range was sensitive to: (1) the amount of methane transported through aerenchyma, (2) soil pH (± 100 Tg CH4 yr−1), and (3) redox inhibition (± 45 Tg CH4 yr−1).