2 resultados para Automatic speech recognition (ASR)
em Helda - Digital Repository of University of Helsinki
Resumo:
The aim of this work was to examine how breathing, swallowing and voicing are affected in different laryngeal disorders. For this purpose, we examined four different patient groups: patients who had undergone total laryngectomy, anterior cervical decompression (ACD), or injection laryngoplasty with autologous fascia (ILAF), and patients with dyspnea during exercise. We studied the problems and benefits related to the automatic speech valve used for the rehabilitation of speech in laryngectomized patients. The device was given to 14 total laryngectomized patients who used the traditional valve especially well. The usefulness of voice and intelligibility of speech were assessed by speech pathologists. The results demonstrated better performance with the traditional valve in both dimensions. Most of the patients considered the automatic valve a helpful additional device but because of heavier breathing and the greater work needed for speech production, it was not suitable as a sole device in speech rehabilitation. Dysphonia and dysphagia are known complications of ACD. These symptoms are caused due to the stretching of tissue needed during the surgery, but the extent and the recovery from them was not well known before our study. We studied two patient groups, an early group with 50 patients who were examined immediately before and after the surgery and a late group with 64 patients who were examined 3 9 months postoperatively. Altogether, 60% reported dysphonia and 69% dysphagia immediately after the operation. Even though dysphagia and dysphonia often appeared after surgery, permanent problems seldom occurred. Six (12 %) cases of transient and two (3 %) permanent vocal cord paresis were detected. In our third study, the long-term results of ILAF in 43 patients with unilateral vocal cord paralysis were examined. The mean follow-up was 5.8 years (range 3 10). Perceptual evaluation demonstrated improved results for voice quality, and videostroboscopy revealed complete or partial glottal closure in 83% of the patients. Fascia showed to be a stable injection material with good vocal results. In our final study we developed a new diagnostic method for exertional laryngeal dyspnea by combining a cardiovascular exercise test with simultaneous fiberoptic observation of the larynx. With this method, it is possible to visualize paradoxal closure of the vocal cords during inspiration, which is a diagnostic criterion for vocal cord dysfunction (VCD). We examined 30 patients referred to our hospital because of suspicion of exercise-induced vocal cord dysfunction (EIVCD). Twenty seven out of thirty patients were able to perform the test. Dyspnea was induced in 15 patients, and of them five had EIVCD and four high suspicion of EIVCD. With our test it is possible to set an accurate diagnosis for exertional laryngeal dyspnea. Moreover, the often seen unnecessary use of asthma drugs among these patients can be avoided.
Resumo:
Comprehension of a complex acoustic signal - speech - is vital for human communication, with numerous brain processes required to convert the acoustics into an intelligible message. In four studies in the present thesis, cortical correlates for different stages of speech processing in a mature linguistic system of adults were investigated. In two further studies, developmental aspects of cortical specialisation and its plasticity in adults were examined. In the present studies, electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings of the mismatch negativity (MMN) response elicited by changes in repetitive unattended auditory events and the phonological mismatch negativity (PMN) response elicited by unexpected speech sounds in attended speech inputs served as the main indicators of cortical processes. Changes in speech sounds elicited the MMNm, the magnetic equivalent of the electric MMN, that differed in generator loci and strength from those elicited by comparable changes in non-speech sounds, suggesting intra- and interhemispheric specialisation in the processing of speech and non-speech sounds at an early automatic processing level. This neuronal specialisation for the mother tongue was also reflected in the more efficient formation of stimulus representations in auditory sensory memory for typical native-language speech sounds compared with those formed for unfamiliar, non-prototype speech sounds and simple tones. Further, adding a speech or non-speech sound context to syllable changes was found to modulate the MMNm strength differently in the left and right hemispheres. Following the acoustic-phonetic processing of speech input, phonological effort related to the selection of possible lexical (word) candidates was linked with distinct left-hemisphere neuronal populations. In summary, the results suggest functional specialisation in the neuronal substrates underlying different levels of speech processing. Subsequently, plasticity of the brain's mature linguistic system was investigated in adults, in whom representations for an aurally-mediated communication system, Morse code, were found to develop within the same hemisphere where representations for the native-language speech sounds were already located. Finally, recording and localization of the MMNm response to changes in speech sounds was successfully accomplished in newborn infants, encouraging future MEG investigations on, for example, the state of neuronal specialisation at birth.