5 resultados para Attribute reduction process
em Helda - Digital Repository of University of Helsinki
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
The increase in drug use and related harms in the late 1990s in Finland has come to be referred to as the second drug wave. In addition to using criminal justice as a basis of drug policy, new kinds of drug regulation were introduced. Some of the new regulation strategies were referred to as "harm reduction". The most widely known practices of harm reduction include needle and syringe exchange programmes for intravenous drug users and medicinal substitution and maintenance treatment programmes for opiate users. The purpose of the study is to examine the change of drug policy in Finland and particularly the political struggle surrounding harm reduction in the context of this change. The aim is, first, to analyse the content of harm reduction policy and the dynamics of its emergence and, second, to assess to what extent harm reduction undermines or threatens traditional drug policy. The concept of harm reduction is typically associated with a drug policy strategy that employs the public health approach and where the principal focus of regulation is on drug-related health harms and risks. On the other hand, harm reduction policy has also been given other interpretations, relating, in particular, to human rights and social equality. In Finland, harm reduction can also be seen to have its roots in criminal policy. The general conclusion of the study is that rather than posing a threat to a prohibitionist drug policy, harm reduction has come to form part of it. The implementation of harm reduction by setting up health counselling centres for drug users with the main focus on needle exchange and by extending substitution treatment has implied the creation of specialised services based on medical expertise and an increasing involvement of the medical profession in addressing drug problems. At the same time the criminal justice control of drug use has been intensified. Accordingly, harm reduction has not entailed a shift to a more liberal drug policy nor has it undermined the traditional policy with its emphasis on total drug prohibition. Instead, harm reduction in combination with a prohibitionist penal policy constitutes a new dual-track drug policy paradigm. The study draws on the constructionist tradition of research on social problems and movements, where the analysis centres on claims made about social problems, claim-makers, ways of making claims and related social mobilisation. The research material mainly consists of administrative documents and interviews with key stakeholders. The doctoral study consists of five original articles and a summary article. The first article gives an overview of the strained process of change of drug policy and policy trends around the turn of the millennium. The second article focuses on the concept of harm reduction and the international organisations and groupings involved in defining it. The third article describes the process that in 1996 97 led to the creation of the first Finnish national drug policy strategy by reconciling mutually contradictory views of addressing the drug problem, at the same as the way was paved for harm reduction measures. The fourth article seeks to explain the relatively rapid diffusion of needle exchange programmes after 1996. The fifth article assesses substitution treatment as a harm reduction measure from the viewpoint of the associations of opioid users and their family members.
Resumo:
The Baltic Sea is one of the largest brackish water bodies in the world. Primary production in the Baltic Sea is limited by nitrogen (N) availability with the exception of river outlets and the northernmost phosphorus limited basin. The excess human induced N load from the drainage basin has caused severe eutrophication of the sea. The excess N loads can be mitigated by microbe mediated natural N removal processes that are found in the oxic-anoxic interfaces in sediments and water column redoxclines. Such interfaces allow the close coupling between the oxic nitrification process, and anoxic denitrification and anaerobic ammonium oxidation (anammox) processes that lead to the formation of molecular nitrogen gas. These processes are governed by various environmental parameters. The effects of these parameters on N processes were investigated in the northern Baltic Sea sediments. During summer months when the sediment organic content is at its highest, nitrification and denitrification reach their maximum rates. However, nitrification had no excess potential, which was probably because of high competition for molecular oxygen (O2) between heterotrophic and nitrification microbes. Subsequently, the limited nitrate (NO3-) availability inhibited denitrification. In fall, winter and spring, nitrification was limited by ammonium availability and denitrification limited by the availability of organic carbon and occasionally by NO3-. Anaerobic ammonium oxidation (anammox) was not an important N removal process in the northern Baltic Sea. Modeling studies suggest that when hypoxia expands in the Baltic Sea, N removal intensifies. However, the results of this study suggest the opposite because bottom water hypoxia (O2< 2 ml l-1) decreased the denitrification rates in sediments. Moreover, N was recycled by the dissimilatory nitrate reduction to ammonium (DNRA) process instead of being removed from the water ecosystem. High N removal potentials were found in the anoxic water column in the deep basins of the Baltic Proper. However, the N removal in the water column appeared to be limited by low substrate availability, because the water at the depths at which the substrate producing nitrification process occurred, rarely mix with the water at the depths at which N removal processes were found. Overall, the natural N removal capacity of the northern Baltic Sea decreased compared to values measured in mid 1990s and early 2000. The reason for this appears to be increasing hypoxia.