47 resultados para Atmospheric Transport

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse cholesterol transport (RCT) is an important function of high-density lipoproteins (HDL) in the protection of atherosclerosis. RCT is the process by which HDL stimulates cholesterol removal from peripheral cells and transports it to the liver for excretion. Premenopausal women have a reduced risk for atherosclerosis compared to age-matched men and there exists a positive correlation for serum 17β-estradiol (E2) and HDL levels in premenopausal women supporting the role of E2 in atherosclerosis prevention. In premenopausal women, E2 associates with HDL as E2 fatty acyl esters. Discovery of the cellular targets, metabolism, and assessment of the macrophage cholesterol efflux potential of these HDL-associated E2 fatty acyl esters were the major objectives of this thesis (study I, III, and IV). Soy phytoestrogens, which are related to E2 in both structure and function, have been proposed to be protective against atherosclerosis but the evidence to support these claims is conflicting. Therefore, another objective of this thesis was to assess the ability of serum from postmenopausal women, treated with isoflavone supplements (compared to placebo), to promote macrophage cholesterol efflux (study II). The scope of this thesis was to cover the roles that HDL-associated E2 fatty acyl esters have in the cellular aspects of RCT and to determine if soy isoflavones can also influence RCT mechanisms. SR-BI was a pivotal cellular receptor, responsible for hepatic and macrophage uptake and macrophage cholesterol efflux potential of HDL-associated E2 fatty acyl esters. Functional SR-BI was also critical for proper LCAT esterification activity which could impact HDL-associated E2 fatty acyl ester assembly and its function. In hepatic cells, LDL receptors also contributed to HDL-associated E2 fatty acyl esters uptake and in macrophage cells, estrogen receptors (ERs) were necessary for both HDL-associated E2 ester-specific uptake and cholesterol efflux potential. HDL-containing E2 fatty acyl esters (E2-FAE) stimulated enhanced cholesterol efflux compared to male HDL (which are deficient in E2) demonstrating the importance of the E2 ester in this process. To support this, premenopausal female HDL, which naturally contains E2, showed greater macrophage cholesterol efflux compared to males. Additionally, hepatic and macrophage cells hydrolyzed the HDL-associated E2 fatty acyl ester into unesterified E2. This could have important biological ramifications because E2, not the esterified form, has potent cellular effects which may influence RCT mechanisms. Lastly, soy isoflavone supplementation in postmenopausal women did not modulate ABCA1-specific macrophage cholesterol efflux but did increase production of plasma pre-β HDL levels, a subclass of HDL. Therefore, the impact of isoflavones on RCT and cardiovascular health needs to be further investigated. Taken as a whole, HDL-associated E2 fatty acyl esters from premenopausal women and soy phytoestrogen treatment in postmenopausal women may be important factors that increase the efficiency of RCT through cellular lipoprotein-related processes and may have direct implications on the cardiovascular health of women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been known for decades that particles can cause adverse health effects as they are deposited within the respiratory system. Atmospheric aerosol particles influence climate by scattering solar radiation but aerosol particles act also as the nuclei around which cloud droplets form. The principal objectives of this thesis were to investigate the chemical composition and the sources of fine particles in different environments (traffic, urban background, remote) as well as during some specific air pollution situations. Quantifying the climate and health effects of atmospheric aerosols is not possible without detailed information of the aerosol chemical composition. Aerosol measurements were carried out at nine sites in six countries (Finland, Germany, Czech, Netherlands, Greece and Italy). Several different instruments were used in order to measure both the particulate matter (PM) mass and its chemical composition. In the off-line measurements the samples were collected first on a substrate or filter and gravimetric and chemical analysis were conducted in the laboratory. In the on-line measurements the sampling and analysis were either a combined procedure or performed successively within the same instrument. Results from the impactor samples were analyzed by the statistical methods. This thesis comprises also a work where a method for the determination carbonaceous matter size distribution by using a multistage impactor was developed. It was found that the chemistry of PM has usually strong spatial, temporal and size-dependent variability. In the Finnish sites most of the fine PM consisted of organic matter. However, in Greece sulfate dominated the fine PM and in Italy nitrate made the largest contribution to the fine PM. Regarding the size-dependent chemical composition, organic components were likely to be enriched in smaller particles than inorganic ions. Data analysis showed that organic carbon (OC) had four major sources in Helsinki. Secondary production was the major source in Helsinki during spring, summer and fall, whereas in winter biomass combustion dominated OC. The significant impact of biomass combustion on OC concentrations was also observed in the measurements performed in Central Europe. In this thesis aerosol samples were collected mainly by the conventional filter and impactor methods which suffered from the long integration time. However, by filter and impactor measurements chemical mass closure was achieved accurately, and a simple filter sampling was found to be useful in order to explain the sources of PM on the seasonal basis. The online instruments gave additional information related to the temporal variations of the sources and the atmospheric mixing conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maltose and maltotriose are the two most abundant sugars in brewer s wort, and thus brewer s yeast s ability to utilize them efficiently is of major importance in the brewing process. The increasing tendency to utilize high and very-high-gravity worts containing increased concentrations of maltose and maltotriose renders the need for efficient transport of these sugars even more pronounced. Residual maltose and especially maltotriose are quite often present especially after high and very-high-gravity fermentations. Sugar uptake capacity has been shown to be the rate limiting factor for maltose and maltotriose utilization. The main aim of the present study was to find novel ways to improve maltose and maltotriose utilization during the main fermentation. Maltose and maltotriose uptake characteristics of several ale and lager strains were studied. Genotype determination of the genes needed for maltose and maltotriose utilization was performed. Maltose uptake inhibition studies were performed to reveal the dominant transporter types actually functioning in each of the strains. Temperature-dependence of maltose transport was studied for ale and for lager strains as well as for each of the single sugar transporter proteins Agt1p, Malx1p and Mtt1p. The AGT1 promoter regions of one ale and two lager strains were sequenced by chromosome walking and the promoter elements were searched for using computational methods. The results showed that ale and lager strains predominantly use different maltose and maltotriose transporter types for maltose and maltotriose uptake. Agt1 transporter was found to be the dominant maltose/maltotriose transporter in the ale strains whereas Malx1 and Mtt1- type transporters dominated in the lager strains. All lager strains studied were found to possess a non-functional Agt1 transporter. The ale strains were observed to be more sensitive to temperature decrease in their maltose uptake compared to the lager strains. Single transporters were observed to differ in their sensitivity to temperature decrease and their temperature-dependence was shown to decrease in the order Agt1≥Malx1>Mtt1. The different temperature-dependence between the ale and lager strains was observed to be due to the different dominant maltose/maltotriose transporters ale and lager strains possessed. The AGT1 promoter regions of ale and lager strains were found to differ markedly from the corresponding regions of laboratory strains. The ale strain was found to possess an extra MAL-activator binding site compared to the lager strains. Improved maltose and maltotriose uptake capacity was obtained with a modified lager strain where the AGT1 gene was repaired and put under the control of a strong promoter. Modified strains fermented wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. Significant savings in the main fermentation time were obtained when modified strains were used. In high-gravity wort fermentations 8 20% and in very-high-gravity wort fermentations even 11 37% time savings were obtained. These are economically significant changes and would cause a marked increase in annual output from the same-size of brewhouse and fermentor facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.