6 resultados para Asperger

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autism and Asperger syndrome (AS) are neurodevelopmental disorders characterised by deficient social and communication skills, as well as restricted, repetitive patterns of behaviour. The language development in individuals with autism is significantly delayed and deficient, whereas in individuals with AS, the structural aspects of language develop quite normally. Both groups, however, have semantic-pragmatic language deficits. The present thesis investigated auditory processing in individuals with autism and AS. In particular, the discrimination of and orienting to speech and non-speech sounds was studied, as well as the abstraction of invariant sound features from speech-sound input. Altogether five studies were conducted with auditory event-related brain potentials (ERP); two studies also included a behavioural sound-identification task. In three studies, the subjects were children with autism, in one study children with AS, and in one study adults with AS. In children with autism, even the early stages of sound encoding were deficient. In addition, these children had altered sound-discrimination processes characterised by enhanced spectral but deficient temporal discrimination. The enhanced pitch discrimination may partly explain the auditory hypersensitivity common in autism, and it may compromise the filtering of relevant auditory information from irrelevant information. Indeed, it was found that when sound discrimination required abstracting invariant features from varying input, children with autism maintained their superiority in pitch processing, but lost it in vowel processing. Finally, involuntary orienting to sound changes was deficient in children with autism in particular with respect to speech sounds. This finding is in agreement with previous studies on autism suggesting deficits in orienting to socially relevant stimuli. In contrast to children with autism, the early stages of sound encoding were fairly unimpaired in children with AS. However, sound discrimination and orienting were rather similarly altered in these children as in those with autism, suggesting correspondences in the auditory phenotype in these two disorders which belong to the same continuum. Unlike children with AS, adults with AS showed enhanced processing of duration changes, suggesting developmental changes in auditory processing in this disorder.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asperger Syndrome (AS) belongs to autism spectrum disorders where both verbal and non-verbal communication difficulties are at the core of the impairment. Social communication requires a complex use of affective, linguistic-cognitive and perceptual processes. In the four studies included in the current thesis, some of the linguistic and perceptual factors that are important for face-to-face communication were studied using behavioural methods. In all four studies the results obtained from individuals with AS were compared with typically developed age, gender and IQ matched controls. First, the language skills of school-aged children were characterized in detail with standardized tests that measured different aspects of receptive and expressive language (Study I). The children with AS were found to be worse than the controls in following complex verbal instructions. Next, the visual perception of facial expressions of emotion with varying degrees of visual detail was examined (Study II). Adults with AS were found to have impaired recognition of facial expressions on the basis of very low spatial frequencies which are important for processing global information. Following that, multisensory perception was investigated by looking at audiovisual speech perception (Studies III and IV). Adults with AS were found to perceive audiovisual speech qualitatively differently from typically developed adults, although both groups were equally accurate in recognizing auditory and visual speech presented alone. Finally, the effect of attention on audiovisual speech perception was studied by registering eye gaze behaviour (Study III) and by studying the voluntary control of visual attention (Study IV). The groups did not differ in eye gaze behaviour or in the voluntary control of visual attention. The results of the study series demonstrate that many factors underpinning face-to-face social communication are atypical in AS. In contrast with previous assumptions about intact language abilities, the current results show that children with AS have difficulties in understanding complex verbal instructions. Furthermore, the study makes clear that deviations in the perception of global features in faces expressing emotions as well as in the multisensory perception of speech are likely to harm face-to-face social communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positional cloning has enabled hypothesis-free, genome-wide scans for genetic factors contributing to disorders or traits. Traditionally linkage analysis has been used to identify regions of interest, followed by meticulous fine mapping and candidate gene screening using association methods and finally sequencing of regions of interest. More recently, genome-wide association analysis has enabled a more direct approach to identify specific genetic variants explaining a part of the variance of the phenotype of interest. Autism spectrum disorders (ASDs) are a group of childhood onset neuropsychiatric disorders with shared core symptoms but varying severity. Although a strong genetic component has been established in ASDs, genetic susceptibility factors have largely eluded characterization. Here, we have utilized modern molecular genetic methods combined with the advantages provided by the special population structure in Finland to identify genetic risk factors for ASDs. The results of this study show that numerous genetic risk factors exist for ASDs even within a population isolate. Stratification based on clinical phenotype resulted in encouraging results, as previously identified linkage to 3p14-p24 was replicated in an independent family set of families with Asperger syndrome, but no other ASDs. Fine-mapping of the previously identified linkage peak for ASDs at 3q25-q27 revealed association between autism and a subunit of the 5-hydroxytryptamine receptor 3C (HTR3C). We also used dense, genome-wide single nucleotide polymorphism (SNP) data to characterize the population structure of Finns. We observed significant population substructure which correlates with the known history of multiple consecutive bottle-necks experienced by the Finnish population. We used this information to ascertain a genetically homogenous subset of autism families to identify possible rare, enriched risk variants using genome-wide SNP data. No rare enriched genetic risk factors were identified in this dataset, although a subset of families could be genealogically linked to form two extended pedigrees. The lack of founder mutations in this isolated population suggests that the majority of genetic risk factors are rare, de novo mutations unique to individual nuclear families. The results of this study are consistent with others in the field. The underlying genetic architecture for this group of disorders appears highly heterogeneous, with common variants accounting for only a subset of genetic risk. The majority of identified risk factors have turned out to be exceedingly rare, and only explain a subset of the genetic risk in the general population in spite of their high penetrance within individual families. The results of this study, together with other results obtained in this field, indicate that family specific linkage, homozygosity mapping and resequencing efforts are needed to identify these rare genetic risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overlapping sound pressure waves that enter our brain via the ears and auditory nerves must be organized into a coherent percept. Modelling the regularities of the auditory environment and detecting unexpected changes in these regularities, even in the absence of attention, is a necessary prerequisite for orientating towards significant information as well as speech perception and communication, for instance. The processing of auditory information, in particular the detection of changes in the regularities of the auditory input, gives rise to neural activity in the brain that is seen as a mismatch negativity (MMN) response of the event-related potential (ERP) recorded by electroencephalography (EEG). --- As the recording of MMN requires neither a subject s behavioural response nor attention towards the sounds, it can be done even with subjects with problems in communicating or difficulties in performing a discrimination task, for example, from aphasic and comatose patients, newborns, and even fetuses. Thus with MMN one can follow the evolution of central auditory processing from the very early, often critical stages of development, and also in subjects who cannot be examined with the more traditional behavioural measures of auditory discrimination. Indeed, recent studies show that central auditory processing, as indicated by MMN, is affected in different clinical populations, such as schizophrenics, as well as during normal aging and abnormal childhood development. Moreover, the processing of auditory information can be selectively impaired for certain auditory attributes (e.g., sound duration, frequency) and can also depend on the context of the sound changes (e.g., speech or non-speech). Although its advantages over behavioral measures are undeniable, a major obstacle to the larger-scale routine use of the MMN method, especially in clinical settings, is the relatively long duration of its measurement. Typically, approximately 15 minutes of recording time is needed for measuring the MMN for a single auditory attribute. Recording a complete central auditory processing profile consisting of several auditory attributes would thus require from one hour to several hours. In this research, I have contributed to the development of new fast multi-attribute MMN recording paradigms in which several types and magnitudes of sound changes are presented in both speech and non-speech contexts in order to obtain a comprehensive profile of auditory sensory memory and discrimination accuracy in a short measurement time (altogether approximately 15 min for 5 auditory attributes). The speed of the paradigms makes them highly attractive for clinical research, their reliability brings fidelity to longitudinal studies, and the language context is especially suitable for studies on language impairments such as dyslexia and aphasia. In addition I have presented an even more ecological paradigm, and more importantly, an interesting result in view of the theory of MMN where the MMN responses are recorded entirely without a repetitive standard tone. All in all, these paradigms contribute to the development of the theory of auditory perception, and increase the feasibility of MMN recordings in both basic and clinical research. Moreover, they have already proven useful in studying for instance dyslexia, Asperger syndrome and schizophrenia.