5 resultados para Artificial wetland abatement

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of buffer areas in forested catchments has been actively researched during the last 15 years; but until now, the research has mainly concentrated on the reduction of sediment and phosphorus loads, instead of nitrogen (N). The aim of this thesis was to examine the use of wetland buffer areas to reduce the nitrogen transport in forested catchments and to investigate the environmental impacts involved in their use. Besides the retention capacity, particular attention was paid to the main factors contributing to the N retention, the potential for increased N2O emissions after large N loading, the effects of peatland restoration for use as buffer areas on CH4 emissions, as well as the vegetation composition dynamics induced by the use of peatlands as buffer areas. To study the capacity of buffer areas to reduce N transport in forested catchments, we first used large artificial loadings of N, and then studied the capacity of buffer areas to reduce ammonium (NH4-N) export originating from ditch network maintenance areas in forested catchments. The potential for increased N2O emissions were studied using the closed chamber technique and a large artificial N loading at five buffer areas. Sampling for CH4 emissions and methane-cycling microbial populations were done on three restored buffer areas and on three buffers constructed on natural peatlands. Vegetation composition dynamics was studied at three buffer areas between 1996 and 2009. Wetland buffer areas were efficient in retaining inorganic N from inflow. The key factors contributing to the retention were the size and the length of the buffer, the hydrological loading and the rate of nutrient loading. Our results show that although the N2O emissions may increase temporarily to very high levels after a large N loading into the buffer area, the buffer areas in forested catchments should be viewed as insignificant sources of N2O. CH4 fluxes were substantially higher from buffers constructed on natural peatlands than from the restored buffer areas, probably because of the slow recovery of methanogens after restoration. The use of peatlands as buffer areas was followed by clear changes in plant species composition and the largest changes occurred in the upstream parts of the buffer areas and the wet lawn-level surfaces, where the contact between the vegetation and the through-flow waters was closer than for the downstream parts and dry hummock sites. The changes in the plant species composition may be an undesired phenomenon especially in the case of the mires representing endangered mire site types, and therefore the construction of new buffer areas should be primarily directed into drained peatland areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents an interdisciplinary analysis of how models and simulations function in the production of scientific knowledge. The work is informed by three scholarly traditions: studies on models and simulations in philosophy of science, so-called micro-sociological laboratory studies within science and technology studies, and cultural-historical activity theory. Methodologically, I adopt a naturalist epistemology and combine philosophical analysis with a qualitative, empirical case study of infectious-disease modelling. This study has a dual perspective throughout the analysis: it specifies the modelling practices and examines the models as objects of research. The research questions addressed in this study are: 1) How are models constructed and what functions do they have in the production of scientific knowledge? 2) What is interdisciplinarity in model construction? 3) How do models become a general research tool and why is this process problematic? The core argument is that the mediating models as investigative instruments (cf. Morgan and Morrison 1999) take questions as a starting point, and hence their construction is intentionally guided. This argument applies the interrogative model of inquiry (e.g., Sintonen 2005; Hintikka 1981), which conceives of all knowledge acquisition as process of seeking answers to questions. The first question addresses simulation models as Artificial Nature, which is manipulated in order to answer questions that initiated the model building. This account develops further the "epistemology of simulation" (cf. Winsberg 2003) by showing the interrelatedness of researchers and their objects in the process of modelling. The second question clarifies why interdisciplinary research collaboration is demanding and difficult to maintain. The nature of the impediments to disciplinary interaction are examined by introducing the idea of object-oriented interdisciplinarity, which provides an analytical framework to study the changes in the degree of interdisciplinarity, the tools and research practices developed to support the collaboration, and the mode of collaboration in relation to the historically mutable object of research. As my interest is in the models as interdisciplinary objects, the third research problem seeks to answer my question of how we might characterise these objects, what is typical for them, and what kind of changes happen in the process of modelling. Here I examine the tension between specified, question-oriented models and more general models, and suggest that the specified models form a group of their own. I call these Tailor-made models, in opposition to the process of building a simulation platform that aims at generalisability and utility for health-policy. This tension also underlines the challenge of applying research results (or methods and tools) to discuss and solve problems in decision-making processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations. A rice paddy module is also incorporated into the model, where the fraction of land used for rice production is explicitly prescribed. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993–2004 were 256 Tg CH4 yr−1, and rice paddy emissions in the year 2000 were 42 Tg CH4 yr−1. Tropical wetlands contributed 201 Tg CH4 yr−1, or 78 % of the global wetland flux. Northern latitude (>50 N) systems contributed 12 Tg CH4 yr−1. We expect this latter number may be an underestimate due to the low high-latitude inundated area captured by satellites and unrealistically low high-latitude productivity and soil carbon predicted by CLM4. Sensitivity analysis showed a large range (150–346 Tg CH4 yr−1) in predicted global methane emissions. The large range was sensitive to: (1) the amount of methane transported through aerenchyma, (2) soil pH (± 100 Tg CH4 yr−1), and (3) redox inhibition (± 45 Tg CH4 yr−1).