11 resultados para Antioxidant supplementation
em Helda - Digital Repository of University of Helsinki
Pathophysiological factors of irritable bowel syndrome, and the effects of probiotic supplementation
Resumo:
Gastrointestinal symptoms and impaired quality of life caused by irritable bowel syndrome (IBS) affect up to 20% of the adult population worldwide. The exact aetiology and pathophysiology of IBS are incompletely understood. Clinical studies suggest that supplementation with certain probiotics may be beneficial in IBS, but there is not enough evidence to make general recommendations. The aim of this thesis was to investigate microbiota- and mucosa-associated pathophysiological factors of IBS, and to evaluate the long-term effects of multispecies probiotic supplementation on symptoms, quality of life, intestinal microbiota and systemic inflammatory markers in IBS. The intestinal microbiota composition in IBS patients and healthy control subjects was analysed by quantitative polymerase chain reaction (qPCR). Significantly lower counts for the Clostridium coccoides and the Bifidobacterium catenulatum groups were found in IBS compared to controls. Quantitative differences also appeared in subgroup analysis based on the predominant bowel habit: diarrhoea patients harboured significantly lower numbers of Lactobacillus spp. than the constipation-predominant patients, while higher counts for Veillonella spp. were detected in constipation-predominant patients compared to healthy controls. Analysis of mucosal biopsies by a metabolomic approach revealed multiple differences between patients and controls. The most prominent finding was an upregulation of specific lipid species, principally lysophosphatidylcholines and ceramides, in IBS. The effects of multispecies probiotic supplementation with Lactobacillus rhamnosus GG, Lactobacillus rhamnosus Lc705, Propionibacterium freudenreichii subsp. shermanii JS, and Bifidobacterium breve Bb99 or Bifidobacterium animalis subsp. lactis Bb12 was evaluated in two, randomised, double-blind, placebo-controlled trials. Compared to placebo, the probiotic supplementation significantly reduced the total symptoms of IBS. No effects on bowel habit were seen. Health-related quality of life (HRQOL) is reduced in patients with IBS in comparison with the Finnish population on the whole. The probiotic supplementation improved one IBS-specific domain of quality of life (bowel symptoms), whereas no other effects on HRQOL were seen. The probiotics had no major effects on the predominant microbiota as measured by qPCR, but a microarray-based analysis suggested that the probiotic consumption stabilised the microbiota. No effects on serum sensitive-CRP or cytokines were detected. In conclusion, alterations in the microbiota composition and in the mucosal metabolite profile are potential pathophysiological factors of IBS. Multispecies probiotic supplementation alleviates the gastrointestinal symptoms of IBS, and improves the bowel symptoms domain of HRQOL. Probiotic supplementation in IBS is associated with a stabilisation of microbiota, but it does not influence systemic inflammatory markers.
Resumo:
Selenium (Se) has been demonstrated to be an essential trace element for maintenance of animal and human health. Although it has not been confirmed to be an essential micronutrient in higher plants, there is increasing evidence that Se functions as an antioxidant in plants. Selenium has been shown to exert a beneficial effect on crop growth and promotes stress tolerance at low concentrations. However, the specific physiological mechanisms that underlie the positive effects of Se in plants have not been clearly elucidated. The aims of this study were to determine the Se concentration in potato (Solanum tuberosum L.) and the effects of Se on the accumulation of carbohydrates, growth and yield in potato plants. An additional aim was to study the impact of Se on the total glycoalkaloid concentration in immature potato tubers. The distribution of Se in different biochemical Se fractions and the effect of storage on the Se concentration were studied in Se-enriched tubers. Furthermore, the effect of Se on raw darkening and translocation of Se from seed tubers to the next tuber generation was investigated. Due to the established anti-ageing properties of Se, it was of interest to study if Se affects physiological age and growth vigour of seed tubers. The Se concentrations in the upper leaves, roots, stolons and tubers of potato increased with increasing Se supplementation. The highest Se concentration was reached in young upper leaves, roots and stolons, indicating that added selenate was efficiently utilized and taken up at an early stage. During the growing period the Se concentration declined in the aerial parts, roots and stolons of potato plants whereas an intensive accumulation took place in immature and mature tubers. Selenium increased carbohydrate accumulation in the young upper leaves and in stolons, roots and tubers at maturity. This could not be explained by increased production of photoassimilates as net photosynthesis did not differ among Se treatments. The Se treated plants produced higher tuber yields than control plants, and at the highest Se concentration (0.3 mg kg-1) lower numbers of larger tubers were harvested. Increased yield of Se treated plants suggested that Se may enhance the allocation of photoassimilates for tuber growth, acting as a strong sink for both Se and for carbohydrates. Similarly as for other plant species, the positive impact of Se on the yield of potato plants could be related to its antioxidative effect in delaying senescence. The highest Se supplementation (0.9 mg kg-1) slightly decreased the glycoalkaloid concentration of immature tubers. However, at this level the Se concentration in tubers was about 20 µg g-1 DW. A 100 g consumption of potato would provide about 500 mg of Se, which exceeds the upper safe intake level of 400 µg per day for human dietary. The low Se applications (0.0035 and 0.1 mg kg-1) diminished and retarded the degree of raw darkening in tubers stored for one and eight months, which can be attributed to the antioxidative properties of Se. The storage for 1 to 12 months did not affect the Se concentrations of tubers. In the Se enriched tubers Se was allocated to the organic Se fraction, indicating that it was incorporated into organic compounds in tubers. Elevated Se concentration in the next-generation tubers produced by the Se enriched seed tubers indicated that Se could be translocated from the seed tubers to the progeny. In the seed tubers stored for 8 months, at high levels, Se had some positive effects on the growth vigour of sprouts, but Se had no consistent effect on the growth vigour of seed tubers of optimal physiological age. These results indicate that Se is a beneficial trace element in potato plants that exerts a positive effect on yield formation and improves the processing and storage quality of table potato tubers. These positive effects of Se are, however, dependent on the Se concentration and the age of the potato plant and tuber.
Resumo:
Soy-derived phytoestrogen genistein and 17β-estradiol (E2), the principal endogenous estrogen in women, are also potent antioxidants protecting LDL and HDL lipoproteins against oxidation. This protection is enhanced by esterification with fatty acids, resulting in lipophilic molecules that accumulate in lipoproteins or fatty tissues. The aims were to investigate, whether genistein becomes esterified with fatty acids in human plasma accumulating in lipoproteins, and to develop a method for their quantitation; to study the antioxidant activity of different natural and synthetic estrogens in LDL and HDL; and to determine the E2 esters in visceral and subcutaneous fat in late pregnancy and in pre- and postmenopause. Human plasma was incubated with [3H]genistein and its esters were analyzed from lipoprotein fractions. Time-resolved fluoroimmunoassay (TR-FIA) was used to quantitate genistein esters in monkey plasma after subcutaneous and oral administration. The E2 esters in women s serum and adipose tissue were also quantitated using TR-FIA. The antioxidant activity of estrogen derivatives (n=43) on LDL and HDL was assessed by monitoring the copper induced formation of conjugated dienes. Human plasma was shown to produce lipoprotein-bound genistein fatty acid esters, providing a possible explanation for the previously reported increased oxidation resistance of LDL particles during intake of soybean phytoestrogens. Genistein esters were introduced into blood by subcutaneous administration. The antioxidant effect of estrogens on lipoproteins is highly structure-dependent. LDL and HDL were protected against oxidation by many unesterified, yet lipophilic derivatives. The strongest antioxidants had an unsubstituted A-ring phenolic hydroxyl group with one or two adjacent methoxy groups. E2 ester levels were high during late pregnancy. The median concentration of E2 esters in pregnancy serum was 0.42 nmol/l (n=13) and in pre- (n=8) and postmenopause (n=6) 0.07 and 0.06 nmol/l, respectively. In pregnancy visceral fat the concentration of E2 esters was 4.24 nmol/l and in pre- and postmenopause 0.82 and 0.74 nmol/l. The results from subcutaneous fat were similar. In serum and fat during pregnancy, E2 esters constituted about 0.5 and 10% of the free E2. In non-pregnant women most of the E2 in fat was esterified (the ester/free ratio 150 - 490%). In postmenopause, E2 levels in fat highly exceeded those in serum, the majority being esterified. The pathways for fatty acid esterification of steroid hormones are found in organisms ranging from invertebrates to vertebrates. The evolutionary preservation and relative abundance of E2 esters, especially in fat tissue, suggest a biological function, most likely in providing a readily available source of E2. The body s own estrogen reservoir could be used as a source of E2 by pharmacologically regulating the E2 esterification or hydrolysis.
Resumo:
Tibolone, a synthetic steroid, is effective in the treatment of postmenopausal symptoms. Its cardiovascular safety profile has been questioned, because tibolone reduces the levels of high-density lipoprotein (HDL) cholesterol. Soy-derived isoflavones may offer health benefits, particularly as regards lipids and also other cardiovascular disease (CVD) risk factors. The soy-isoflavone metabolite equol is thought to be the key as regards soy-related beneficial effects. We studied the effects of soy supplementation on various CVD risk factors in postmenopausal monkeys and postmenopausal women using tibolone. In addition, the impact of equol production capability was studied. A total of 18 monkeys received casein/lactalbumin (C/L) (placebo), tibolone, soy (a woman s equivalent dose of 138 mg of isoflavones), or soy with tibolone in a randomized order for 14 weeks periods, and there was a 4-week washout (C/L) in between treatments. Postmenopausal women using tibolone (N=110) were screened by means of a one-week soy challenge to find 20 women with equol production capability (4-fold elevation from baseline equol level) and 20 control women, and treated in a randomized cross-over trial with a soy powder (52 g of soy protein containing 112 mg of isoflavones) or placebo for 8 weeks. Before and after the treatments lipids and lipoproteins were assessed in both monkeys and women. In addition, blood pressure, arterial stiffness, endothelial function, sex steroids, sex hormone-binding globulin (SHBG), and vascular inflammation markers were assessed. A 14% increase in plasma low-density lipoprotein (LDL) + very low-density lipoprotein (VLDL) cholesterol was observed in tibolone-treated monkeys vs. placebo. Soy treatment resulted in a 18% decrease in LDL+VLDL cholesterol, and concomitant supplementation with tibolone did not negate the LDL+VLDL cholesterol-lowering effect of soy. A 30% increase in HDL cholesterol was observed in monkeys fed with soy, whereas HDL cholesterol levels were reduced (48%) after tibolone. Interestingly, Soy+Tibolone diet conserved HDL cholesterol levels. Tibolone alone increased the total cholesterol (TC):HDL cholesterol ratio, whereas it was reduced by Soy or Soy+Tibolone. In postmenopausal women using tibolone, reductions in the levels of total cholesterol and LDL cholesterol were seen after soy supplementation compared with placebo, but there was no effect on HDL cholesterol, blood pressure, arterial stiffness or endothelial function. Soy supplementation decreased the levels of estrone in equol producers, and those of testosterone in the entire study population. No changes were seen in the levels of androstenedione, dehydroepiandrosterone sulfate, or SHBG. The levels of vascular cell adhesion molecule-1 increased, and platelet-selectin decreased after soy treatment, whereas C-reactive protein and intercellular adhesion molecule-1 remained unchanged. At baseline and unrelated to soy treatment, equol producers had lower systolic, diastolic and mean arterial pressures, less arterial stiffness and better endothelial function than non-producers. To conclude, soy supplementation reversed the tibolone-induced fall in HDL cholesterol in postmenopausal monkeys, but this effect was not seen in women taking tibolone. Equol production capability was associated with beneficial cardiovascular changes and thus, this characteristic may offer cardiovascular benefits, at least in women using tibolone.
Resumo:
The main objectives in this thesis were to isolate and identify the phenolic compounds in wild (Sorbus aucuparia) and cultivated rowanberries, European cranberries (Vaccinium microcarpon), lingonberries (Vaccinium vitis-idaea), and cloudberries (Rubus chamaemorus), as well as to investigate the antioxidant activity of phenolics occurring in berries in food oxidation models. In addition, the storage stability of cloudberry ellagitannin isolate was studied. In wild and cultivated rowanberries, the main phenolic compounds were chlorogenic acids and neochlorogenic acids with increasing anthocyanin content depending on the crossing partners. The proanthocyanidin contents of cranberries and lingonberries were investigated, revealing that the lingonberry contained more rare A-type dimers than the European cranberry. The liquid chromatography mass spectrometry (LC-MS) analysis of cloudberry ellagitannins showed that trimeric lambertianin C and sanguiin H-10 were the main ellagitannins. The berries, rich in different types of phenolic compounds including hydroxycinnamic acids, proanthocyanidins, and ellagitannins, showed antioxidant activity toward lipid oxidation in liposome and emulsion oxidation models. All the different rowanberry cultivars prevented lipid oxidation in the same way, in spite of the differences in their phenolic composition. In terms of liposomes, rowanberries were slightly more effective antioxidants than cranberry and lingonberry phenolics. Greater differences were found when comparing proanthocyanidin fractions. Proanthocyanidin dimers and trimers of both cranberries and lingonberries were most potent in inhibiting lipid oxidation. Antioxidant activities and antiradical capacities were also studied with hydroxycinnamic acid glycosides. The sinapic acid derivatives of the hydroxycinnamic acid glycosides were the most effective at preventing lipid oxidation in emulsions and liposomes and scavenging radicals in DPPH assay. In liposomes and emulsions, the formation of the secondary oxidation product, hexanal, was inhibited more than that of the primary oxidation product, conjugated diene hydroperoxides, by hydroxycinnamic acid derivatives. This indicates that they are principally chain-breaking antioxidants rather than metal chelators, although they possess chelating activity as well. The storage stability test of cloudberry ellagitannins was performed by storing ellagitannin isolate and ellagitannins encapsulated with maltodextrin at different relative vapor pressures. The storage stability was enhanced by the encapsulation when higher molecular weight maltodextrin was used. The best preservation was achieved when the capsules were stored at 0 or 33% relative vapor pressures. In addition, the antioxidant activities of encapsulated cloudberry extracts were followed during the storage period. Different storage conditions did not alter the antioxidant activity, even though changes in the ellagitannin contents were seen. The current results may be of use in improving the oxidative stability of food products by using berries as natural antioxidants.