4 resultados para Amsterdam, Gemeente
em Helda - Digital Repository of University of Helsinki
Resumo:
Recent epidemiological studies have shown a consistent association of the mass concentration of urban air thoracic (PM10) and fine (PM2.5) particles with mortality and morbidity among cardiorespiratory patients. However, the chemical characteristics of different particulate size ranges and the biological mechanisms responsible for these adverse health effects are not well known. The principal aims of this thesis were to validate a high volume cascade impactor (HVCI) for the collection of particulate matter for physicochemical and toxicological studies, and to make an in-depth chemical and source characterisation of samples collected during different pollution situations. The particulate samples were collected with the HVCI, virtual impactors and a Berner low pressure impactor in six European cities: Helsinki, Duisburg, Prague, Amsterdam, Barcelona and Athens. The samples were analysed for particle mass, common ions, total and water-soluble elements as well as elemental and organic carbon. Laboratory calibration and field comparisons indicated that the HVCI can provide a unique large capacity, high efficiency sampling of size-segregated aerosol particles. The cutoff sizes of the recommended HVCI configuration were 2.4, 0.9 and 0.2 μm. The HVCI mass concentrations were in a good agreement with the reference methods, but the chemical composition of especially the fine particulate samples showed some differences. This implies that the chemical characterization of the exposure variable in toxicological studies needs to be done from the same HVCI samples as used in cell and animal studies. The data from parallel, low volume reference samplers provide valuable additional information for chemical mass closure and source assessment. The major components of PM2.5 in the virtual impactor samples were carbonaceous compounds, secondary inorganic ions and sea salt, whereas those of coarse particles (PM2.5-10) were soil-derived compounds, carbonaceous compounds, sea salt and nitrate. The major and minor components together accounted for 77-106% and 77-96% of the gravimetrically-measured masses of fine and coarse particles, respectively. Relatively large differences between sampling campaigns were observed in the organic carbon content of the PM2.5 samples as well as the mineral composition of the PM2.5-10 samples. A source assessment based on chemical tracers suggested clear differences in the dominant sources (e.g. traffic, residential heating with solid fuels, metal industry plants, regional or long-range transport) between the sampling campaigns. In summary, the field campaigns exhibited different profiles with regard to particulate sources, size distribution and chemical composition, thus, providing a highly useful setup for toxicological studies on the size-segregated HVCI samples.
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
An HIV outbreak among Finnish injecting drug users (IDUs) occurred in 1998. By the end of 2005, 282 IDUs were in-fected, most of them by recombinant virus CRF01_AE of HIV. After a rapid spread, the outbreak subsided, and the prevalence of HIV among IDUs remained low (<2%). The purpose of the study was to describe the outbreak in order to recognise factors that have influenced the spread and restriction of the outbreak, and thus to find tools for HIV preven-tion. Data on Finnish IDUs newly diagnosed HIV-positive between 1998 and 2005 was collected through interviews and patient documents. Study I compared markers of disease progression between 93 Finnish IDUs and 63 Dutch IDUs. In study II, geographical spread of the HIV outbreak was examined and compared with the spatial distribution of employed males. In study III, risk behaviour data from interviews of 89 HIV-positive and 207 HIV-negative IDUs was linked, and prevalence and risk factors for unprotected sex were evaluated. In study IV, data on 238 newly diagnosed IDUs was combined with data on 675 sexually transmitted HIV cases, and risk factors for late HIV diagnosis (CD4 cell count <200/µL, or AIDS at HIV diagnosis) were analysed. Finnish IDUs infected with CRF01_AE exhibited higher viral loads than did Amsterdam IDUs infected with subtype B, but there was no difference in CD4 development. The Finnish IDU outbreak spread and was restricted socially in a marginalised IDU population and geographically in areas characterised by low proportions of employed males. Up to 40% of the cases in the two clusters outside the city centre had no contact with the centre, where needle exchange services were available since 1997. Up to 63% of HIV-positive and 80% of HIV-negative sexually active IDUs reported inconsistent condom use, which was associated with steady relationships and recent inpatient addiction care. Com-pared to other transmission groups, HIV-positive IDUs were diagnosed earlier in their infection. The proportion of late diagnosed HIV cases in all transmission groups was 23%, but was only 6% among IDUs diagnosed during the first four years of the epidemic. The high viral load in early HIV infection may have contributed to the rapid spread of recombinant virus in the Finnish outbreak. The outbreak was restricted to a marginalised IDU population, and limited spatially to local pockets of pov-erty. To prevent HIV among IDUs, these pockets should be recognised and reached early through outreach work and the distribution of needle exchange and other prevention activities. To prevent the sexual transmission of HIV among IDUs, prevention programmes should be combined with addiction care services and targeted at every IDU. The early detection of the outbreak and early implementation of needle exchange programmes likely played a crucial role in re-versing the IDU outbreak.