2 resultados para Alkaloid

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complications of atherosclerosis such as myocardial infarction and stroke are the primary cause of death in Western societies. The development of atherosclerotic lesions is a complex process, including endothelial cell dysfunction, inflammation, extracellular matrix alteration and vascular smooth muscle cell (VSMC) proliferation and migration. Various cell cycle regulatory proteins control VSMC proliferation. Protein kinases called cyclin dependent kinases (CDKs) play a major role in regulation of cell cycle progression. At specific phases of the cell cycle, CDKs pair with cyclins to become catalytically active and phosphorylate numerous substrates contributing to cell cycle progression. CDKs are also regulated by cyclin dependent kinase inhibitors, activating and inhibitory phosphorylation, proteolysis and transcription factors. This tight regulation of cell cycle is essential; thus its deregulation is connected to the development of cancer and other proliferative disorders such as atherosclerosis and restenosis as well as neurodegenerative diseases. Proteins of the cell cycle provide potential and attractive targets for drug development. Consequently, various low molecular weight CDK inhibitors have been identified and are in clinical development. Tylophorine is a phenanthroindolizidine alkaloid, which has been shown to inhibit the growth of several human cancer cell lines. It was used in Ayurvedic medicine to treat inflammatory disorders. The aim of this study was to investigate the effect of tylophorine on human umbilical vein smooth muscle cell (HUVSMC) proliferation, cell cycle progression and the expression of various cell cycle regulatory proteins in order to confirm the findings made with tylophorine in rat cells. We used several methods to determine our hypothesis, including cell proliferation assay, western blot and flow cytometric cell cycle distribution analysis. We demonstrated by cell proliferation assay that tylophorine inhibits HUVSMC proliferation dose-dependently with an IC50 value of 164 nM ± 50. Western blot analysis was used to determine the effect of tylophorine on expression of cell cycle regulatory proteins. Tylophorine downregulates cyclin D1 and p21 expression levels. The results of tylophorine’s effect on phosphorylation sites of p53 were not consistent. More sensitive methods are required in order to completely determine this effect. We used flow cytometric cell cycle analysis to investigate whether tylophorine interferes with cell cycle progression and arrests cells in a specific cell cycle phase. Tylophorine was shown to induce the accumulation of asynchronized HUVSMCs in S phase. Tylophorine has a significant effect on cell cycle, but its role as cell cycle regulator in treatment of vascular proliferative diseases and cancer requires more experiments in vitro and in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycotoxins are secondary metabolites of filamentous fungi. They pose a health risk to humans and animals due to their harmful biological properties and common occurrence in food and feed. Liquid chromatography/mass spectrometry (LC/MS) has gained popularity in the trace analysis of food contaminants. In this study, the applicability of the technique was evaluated in multi-residue methods of mycotoxins aiming at simultaneous detection of chemically diverse compounds. Methods were developed for rapid determination of toxins produced by fungal genera of Aspergillus, Fusarium, Penicillium and Claviceps from cheese, cereal based agar matrices and grains. Analytes were extracted from these matrices with organic solvents. Minimal sample clean-up was carried out before the analysis of the mycotoxins with reversed phase LC coupled to tandem MS (MS/MS). The methods were validated and applied for investigating mycotoxins in cheese and ergot alkaloid occurrence in Finnish grains. Additionally, the toxin production of two Fusarium species predominant in northern Europe was studied. Nine mycotoxins could be determined from cheese with the method developed. The limits of quantification (LOQ) allowed the quantification at concentrations varying from 0.6 to 5.0 µg/kg. The recoveries ranged between 96 and 143 %, and the within-day repeatability (as relative standard deviation, RSDr) between 2.3 and 12.1 %. Roquefortine C and mycophenolic acid could be detected at levels of 300 up to 12000 µg/kg in the mould cheese samples analysed. A total of 29 or 31 toxins could be analysed with the method developed for agar matrices and grains, with the LOQs ranging overall from 0.1 to 1250 µg/kg. The recoveries ranged generally between 44 and 139 %, and the RSDr between 2.0 and 38 %. Type-A trichothecenes and beauvericin were determined from the cereal based agar and grain cultures of F. sporotrichioides and F. langsethiae. T-2 toxin was the main metabolite, the average levels reaching 22000 µg/kg in the grain cultures after 28 days of incubation. The method developed for ten ergot alkaloids from grains allowed their quantification at levels varying from 0.01 to 10 µg/kg. The recoveries ranged from 51 to 139 %, and the RSDr from 0.6 to 13.9 %. Ergot alkaloids were measured in barley and rye at average levels of 59 and 720 µg/kg, respectively. The two most prevalent alkaloids were ergocornine and ergocristine. The LC/MS methods developed enabled rapid detection of mycotoxins in such applications where several toxins co-occurred. Generally, the performance of the methods was good, allowing reliable analysis of the mycotoxins of interest with sufficiently low quantification limits. However, the variation in validation results highlighted the challenges related to optimising this type of multi-residue methods. New data was obtained about the occurrence of mycotoxins in mould cheeses and of ergot alkaloids in Finnish grains. In addition, the study revealed the high mycotoxin-producing potential of two common fungi in Finnish crops. The information can be useful when risks related to fungal and mycotoxin contamination will be assessed.