5 resultados para Alabama State Bar Association
em Helda - Digital Repository of University of Helsinki
Resumo:
A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb^{-1} of integrated luminosity from p-bar p collisions at sqrt{s} = 1.96 TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude Higgs bosons with masses below 106 GeV at a 95% Bayesian credibility level (C.L.) for one fermiophobic benchmark model.
Resumo:
We present a search for associated production of the standard model (SM) Higgs boson and a $Z$ boson where the $Z$ boson decays to two leptons and the Higgs decays to a pair of $b$ quarks in $p\bar{p}$ collisions at the Fermilab Tevatron. We use event probabilities based on SM matrix elements to construct a likelihood function of the Higgs content of the data sample. In a CDF data sample corresponding to an integrated luminosity of 2.7 fb$^{-1}$ we see no evidence of a Higgs boson with a mass between 100 GeV$/c^2$ and 150 GeV$/c^2$. We set 95% confidence level (C.L.) upper limits on the cross-section for $ZH$ production as a function of the Higgs boson mass $m_H$; the limit is 8.2 times the SM prediction at $m_H = 115$ GeV$/c^2$.
Resumo:
We present a search for the Higgs boson in the process $q\bar{q} \to ZH \to \ell^+\ell^- b\bar{b}$. The analysis uses an integrated luminosity of 1 fb$^{-1}$ of $p\bar{p}$ collisions produced at $\sqrt{s} =$ 1.96 TeV and accumulated by the upgraded Collider Detector at Fermilab (CDF II). We employ artificial neural networks both to correct jets mismeasured in the calorimeter, and to distinguish the signal kinematic distributions from those of the background. We see no evidence for Higgs boson production, and set 95% CL upper limits on $\sigma_{ZH} \cdot {\cal B}(H \to b\bar{b}$), ranging from 1.5 pb to 1.2 pb for a Higgs boson mass ($m_H$) of 110 to 150 GeV/$c^2$.
Resumo:
We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p\bar{p} collision data at sqrt{s} = 1.96 TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4 sigma and is the first observation of WW+WZ production using this signature. Combining the results gives sigma_{WW+WZ} = 16.0 +/- 3.3 pb, in agreement with the standard model prediction.
Resumo:
We present a search for the technicolor particles $\rho_{T}$ and $\pi_{T}$ in the process $p\bar{p} \to \rho_{T} \to W\pi_{T}$ at a center of mass energy of $\sqrt{s}=1.96 \mathrm{TeV}$. The search uses a data sample corresponding to approximately $1.9 \mathrm{fb}^{-1}$ of integrated luminosity accumulated by the CDF II detector at the Fermilab Tevatron. The event signature we consider is $W\to \ell\nu$ and $\pi_{T} \to b\bar{b}, b\bar{c}$ or $b\bar{u}$ depending on the $\pi_{T}$ charge. We select events with a single high-$p_T$ electron or muon, large missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with multiple $b$-tagging algorithms. The observed number of events and the invariant mass distributions are consistent with the standard model background expectations, and we exclude a region at 95% confidence level in the $\rho_T$-$\pi_T$ mass plane. As a result, a large fraction of the region $m(\rho_T) = 180$ - $250 \mathrm{GeV}/c^2$ and $m(\pi_T) = 95$ - $145 \mathrm{GeV}/c^2$ is excluded.