4 resultados para Accident risk forecasting.
em Helda - Digital Repository of University of Helsinki
Resumo:
Road traffic accidents are a large problem everywhere in the world. However, regional differences in traffic safety between countries are considerable. For example, traffic safety records are much worse in Southern Europe and the Middle East than in Northern and Western Europe. Despite the large regional differences in traffic safety, factors contributing to different accident risk figures in different countries and regions have remained largely unstudied. The general aim of this study was to investigate regional differences in traffic safety between Southern European/Middle Eastern (i.e., Greece, Iran, Turkey) and Northern/Western European (i.e., Finland, Great Britain, The Netherlands) countries and to identify factors related to these differences. We conducted seven sub-studies in which I applied a traffic culture framework, including a multi-level approach, to traffic safety. We used aggregated level data (national statistics), surveys among drivers, and data on traffic accidents and fatalities in the analyses. In the first study, we investigated the influence of macro level factors (i.e., economic, societal, and cultural) on traffic safety across countries. The results showed that a high GNP per capita and conservatism correlated with a low number of traffic fatalities, whereas a high degree of uncertainty avoidance, neuroticism, and egalitarianism correlated with a high number of traffic fatalities. In the second, third, and fourth studies, we examined whether the conceptualisation of road user characteristics (i.e., driver behaviour and performance) varied across traffic cultures and how these factors determined overall safety, and the differences between countries in traffic safety. The results showed that the factorial agreement for driver behaviour (i.e., aggressive driving) and performance (i.e., safety skills) was unsatisfactory in Greece, Iran, and Turkey, where the lack of social tolerance and interpersonal aggressive violations seem to be important characteristics of driving. In addition, we found that driver behaviour (i.e., aggressive violations and errors) mediated the relationship between culture/country and accidents. Besides, drivers from "dangerous" Southern European countries and Iran scored higher on aggressive violations and errors than did drivers from "safe" Northern European countries. However, "speeding" appeared to be a "pan-cultural" problem in traffic. Similarly, aggressive driving seems largely depend on road users' interactions and drivers' interpretation (i.e., cognitive biases) of the behaviour of others in every country involved in the study. Moreover, in all countries, a risky general driving style was mostly related to being young and male. The results of the fifth and sixth studies showed that among young Turkish drivers, gender stereotypes (i.e., masculinity and femininity) greatly influence driver behaviour and performance. Feminine drivers were safety-oriented whereas masculine drivers were skill-oriented and risky drivers. Since everyday driving tasks involve not only erroneous (i.e., risky or dangerous driving) or correct performance (i.e., normal habitual driving), but also "positive" driver behaviours, we developed a reliable scale for measuring "positive" driver behaviours among Turkish drivers in the seventh study. Consequently, I revised Reason's model [Reason, J. T., 1990. Human error. Cambridge University Press: New York] of aberrant driver behaviour to represent a general driving style, including all possible intentional behaviours in traffic while evaluating the differences between countries in traffic safety. The results emphasise the importance of economic, societal and cultural factors, general driving style and skills, which are related to exposure, cognitive biases as well as age, sex, and gender, in differences between countries in traffic safety.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
Fatigue and sleepiness are major causes of road traffic accidents. However, precise data is often lacking because a validated and reliable device for detecting the level of sleepiness (cf. the breathalyzer for alcohol levels) does not exist, nor does criteria for the unambiguous detection of fatigue/sleepiness as a contributing factor in accident causation. Therefore, identification of risk factors and groups might not always be easy. Furthermore, it is extremely difficult to incorporate fatigue in operationalized terms into either traffic or criminal law. The main aims of this thesis were to estimate the prevalence of fatigue problems while driving among the Finnish driving population, to explore how VALT multidisciplinary investigation teams, Finnish police, and courts recognize (and prosecute) fatigue in traffic, to identify risk factors and groups, and finally to explore the application of the Finnish Road Traffic Act (RTA), which explicitly forbids driving while tired in Article 63. Several different sources of data were used: a computerized database and the original folders of multidisciplinary teams investigating fatal accidents (VALT), the driver records database (AKE), prosecutor and court decisions, a survey of young male military conscripts, and a survey of a representative sample of the Finnish active driving population. The results show that 8-15% of fatal accidents during 1991-2001 were fatigue related, that every fifth Finnish driver has fallen asleep while driving at some point during his/her driving career, and that the Finnish police and courts punish on average one driver per day on the basis of fatigued driving (based on the data from the years 2004-2005). The main finding regarding risk factors and risk groups is that during the summer months, especially in the afternoon, the risk of falling asleep while driving is increased. Furthermore, the results indicate that those with a higher risk of falling asleep while driving are men in general, but especially young male drivers including military conscripts and the elderly during the afternoon hours and the summer in particular; professional drivers breaking the rules about duty and rest hours; and drivers with a tendency to fall asleep easily. A time-of-day pattern of sleep-related incidents was repeatedly found. It was found that VALT teams can be considered relatively reliable when assessing the role of fatigue and sleepiness in accident causation; thus, similar experts might be valuable in the court process as expert witnesses when fatigue or sleepiness are suspected to have a role in an accident’s origins. However, the application of Article 63 of the RTA that forbids, among other things, fatigued driving will continue to be an issue that deserves further attention. This should be done in the context of a needed attitude change towards driving while in a state of extreme tiredness (e.g., after being awake for more than 24 hours), which produces performance deterioration comparable to illegal intoxication (BAC around 0.1%). Regarding the well-known interactive effect of increased sleepiness and even small alcohol levels, the relatively high proportion (up to 14.5%) of Finnish drivers owning and using a breathalyzer raises some concern. This concern exists because these drivers are obviously more focused on not breaking the “magic” line of 0.05% BAC than being concerned about driving impairment, which might be much worse than they realize because of the interactive effects of increased sleepiness and even low alcohol consumption. In conclusion, there is no doubt that fatigue and sleepiness problems while driving are common among the Finnish driving population. While we wait for the invention of reliable devices for fatigue/sleepiness detection, we should invest more effort in raising public awareness about the dangerousness of fatigued driving and educate drivers about how to recognize and deal with fatigue and sleepiness when they ultimately occur.
Resumo:
In this thesis we deal with the concept of risk. The objective is to bring together and conclude on some normative information regarding quantitative portfolio management and risk assessment. The first essay concentrates on return dependency. We propose an algorithm for classifying markets into rising and falling. Given the algorithm, we derive a statistic: the Trend Switch Probability, for detection of long-term return dependency in the first moment. The empirical results suggest that the Trend Switch Probability is robust over various volatility specifications. The serial dependency in bear and bull markets behaves however differently. It is strongly positive in rising market whereas in bear markets it is closer to a random walk. Realized volatility, a technique for estimating volatility from high frequency data, is investigated in essays two and three. In the second essay we find, when measuring realized variance on a set of German stocks, that the second moment dependency structure is highly unstable and changes randomly. Results also suggest that volatility is non-stationary from time to time. In the third essay we examine the impact from market microstructure on the error between estimated realized volatility and the volatility of the underlying process. With simulation-based techniques we show that autocorrelation in returns leads to biased variance estimates and that lower sampling frequency and non-constant volatility increases the error variation between the estimated variance and the variance of the underlying process. From these essays we can conclude that volatility is not easily estimated, even from high frequency data. It is neither very well behaved in terms of stability nor dependency over time. Based on these observations, we would recommend the use of simple, transparent methods that are likely to be more robust over differing volatility regimes than models with a complex parameter universe. In analyzing long-term return dependency in the first moment we find that the Trend Switch Probability is a robust estimator. This is an interesting area for further research, with important implications for active asset allocation.