6 resultados para ASPERGILLUS-NIDULANS
em Helda - Digital Repository of University of Helsinki
Resumo:
Tutkielman kirjallisuusosassa perehdyttiin vehnän, rukiin ja ohran, eli Triticeaeprolamiinien erityisasemaan keliakianäkökulmasta tarkasteltuna ja prolamiinien hydrolyysiin proliinispesifeillä entsyymeillä. Lisäksi tarkasteltiin prolamiinien immunologisia määritysmenetelmiä. Keliakiassa haitalliset gluteenipeptidit sisältävät runsaasti proliinia ja ovat hankalia pilkkoa muilla kuin proliinispesifeillä peptidaaseilla. Suurin osa immunologisen reaktion aiheuttavista gluteenilähtöisistä peptideistä voidaan pilkkoa idätetyn viljan endogeenisilla entsyymeillä happamissa olosuhteissa, mutta jäljellejäävä prolamiinipitoisuus ylittää edelleen gluteenittomille tuotteille sallitun rajan. Kokeellisen työn tavoitteena oli eliminoida happamalla mallasinkubaatiolla valmistettujen vehnä-, ohra- ja ruismallasautolysaattien sisältämä jäännösprolamiini Aspergillus niger -homeen tuottamalla proliinispesifillä endopeptidaasilla (AN-PEP) siten, että hydrolysaattia voitaisiin käyttää gluteenittomissa leivontasovelluksissa. Proteiinien hydrolyysiä tarkkailtiin kokoekskluusiokromatografialla (SEC), vapaan aminotypen (FAN) muodostumisena ja SDS-PAGE-elektroforeesilla. Jäännösprolamiinien pilkkoutumista seurattiin immunologisella R5-ELISA-menetelmällä. AN-PEP-inkubaatiolla saatiin aikaan voimakasta prolamiinien pilkkoutumista; mallasautolysaattien jäännösprolamiinista pilkkoutui yli 96 %. SEC- ja FAN-analyysien perusteella inkubaatioaikaa kannatti jatkaa yli 4 h, jolloin polypeptidit pilkkoutuivat edelleen pienemmiksi hydrolyysituotteiksi. Vehnä- ja ruismallashydrolysaattien prolamiinipitoisuuden todettiin laskevan 22 h inkubaation aikana alle tason 100 mg/kg R5-ELISA-menetelmällä määritettynä. Matalimmat prolamiinipitoisuudet saavutettiin AN-PEP-pitoisuudella 35 ?l / g mallasautolysaattia. Codex Alimentarius -komission säädöksen mukaan keliakiaruokavalioon soveltuvat ns. erittäin vähägluteeniset tuotteet saavat sisältää gluteenia enintään 100 mg/kg. Erityisesti AN-PEP-käsiteltyä ruismallasraaka-ainetta voitaisiin mahdollisesti käyttää tuomaan rukiista aromia gluteenittomiin leipiin. Ennen kuin mallashydrolysaatit ovat valmiita kaupallisiin sovelluksiin, on tarkasteltava niiden todellisia mahdollisuuksia parantaa elintarvikkeiden makua ja aromia sekä todettava uuden teknologian turvallisuus keliaakikoille.
Resumo:
Flax and hemp have traditionally been used mainly for textiles, but recently interest has also been focused on non-textile applications. Microbial quality throughout the whole processing chain of bast fibres has not previously been studied. This study concentrates on the microbial quality and possible microbial risks in the production chain of hemp and flax fibres and fibrous thermal insulations. In order to be able to utilize hemp and flax fibres, the bast fibres must be separated from the rest of the plant. Non-cellulosic components can be removed with various pretreatment processes, which are associated with a certain risk of microbial contamination. In this study enzymatic retting and steam explosion (STEX) were examined as pretreatment processes. On the basis of the results obtained in this study, the microbial contents on stalks of both plants studied increased at the end of the growing season and during the winter. However, by processing and mechanical separation it is possible to produce fibres containing less moulds and bacteria than the whole stem. Enzymatic treatment encouraged the growth of moulds in fibres. Steam explosion reduced the amount of moulds in fibres. Dry thermal treatment used in this study did not markedly reduce the amount of microbes. In this project an emission measurement chamber was developed which was suitable for measurements of emissions from both mat type and loose fill type insulations, and capable of interdisciplinary sampling. In this study, the highest amounts of fungal emissions were in the range of 10^3 10^5 cfu/m^3 from the flax and hemp insulations at 90% RH of air. The fungal emissions from stone wool, glass wool and recycled paper insulations were below 10^2 cfu/m^3 even at 90% RH. Equally low values were obtained from bast fibrous materials in lower humidities (at 30% and 80% RH of air). After drying of moulded insulations at 30% RH, the amounts of emitted moulds were in all cases higher compared to the emissions at 90% RH before drying. The most common fungi in bast fibres were Penicillium and Rhizopus. The widest variety of different fungi was in the untreated hemp and linseed fibres and in the commercial loose-fill flax insulation. Penicillium, Rhizopus and Paecilomyces were the most tolerant to steam explosion. According to the literature, the most common fungi in building materials and indoor air are Penicillium, Aspergillus and Cladosporium, which were all found in some of the bast fibre materials in this study. As organic materials, hemp and flax fibres contain high levels of nutrients for microbial growth. The amount of microbes can be controlled and somewhat decreased by the processing methods presented.
Resumo:
Arabinoxylo-oligosaccharides (AXOS) can be prepared enzymatically from arabinoxylans (AX) and AXOS are known to possess prebiotic potential. Here the structural features of 10 cereal AX were examined. AX were hydrolysed by Shearzyme® to prepare AXOS, and their structures were fully analysed. The prebiotic potential of the purified AXOS was studied in the fermentation experiments with bifidobacteria and faecal microbiota. In AX extracted from flours and bran, high amounts of a-L-Araf units are attached to the b-D-Xylp main chain, whereas moderate or low degree of substitution was found from husks, cob and straw. Nuclear magnetic resonance (NMR) spectroscopy showed that flour and bran AX contain high amounts of a-L-Araf units bound to the O-3 of b-D-Xylp residues and doubly substituted b-D-Xylp units with a-L-Araf substituents at O-2 and O-3. Barley husk and corn cob AX contain high amounts of b-D-Xylp(1→2)-a-L-Araf(1→3) side chains, which can also be found in AX from oat spelts and rice husks, and in lesser amounts in wheat straw AX. Rye and wheat flour AX and oat spelt AX were hydrolysed by Shearzyme® (with Aspergillus aculeatus GH10 endo-1,4-b-D-xylanase as the main enzyme) for the production of AXOS on a milligram scale. The AXOS were purified and their structures fully analysed, using mass spectrometry (MS) and 1D and 2D NMR spectroscopy. Monosubstituted xylobiose and xylotriose with a-L-Araf attached to the O-3 or O-2 of the nonreducing end b-D-Xylp unit and disubstituted AXOS with two a-L-Araf units at the nonreducing end b-D-Xylp unit of xylobiose or xylotriose were produced. Xylobiose with b-D-Xylp(1→2)-a-L-Araf(1→3) side chain was also purified. These AXOS were used as standards in further identification and quantification of corresponding AXOS from the hydrolysates in high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis. The prebiotic potential of AXOS was tested in in vitro fermentation experiments. Bifidobacterium adolescentis ATCC 15703 and B. longum ATCC 15707 utilized AXOS from the AX hydrolysates. Both species released L-arabinose from AXOS, but B. adolescentis consumed the XOS formed, whereas B. longum fermented the L-arabinose released. The third species tested, B. breve ATCC 15700, grew poorly on these substrates. When cultivated on pure AXOS, the bifidobacterial mixture utilized pure singly substituted AXOS almost completely, but no growth was detected with pure doubly substituted AXOS as substrates. However, doubly substituted AXOS were utilized from the mixture of xylose, XOS and AXOS. Faecal microbiota utilized both pure singly and doubly substituted AXOS. Thus, a mixture of singly and doubly substituted AXOS could function as a suitable, slowly fermenting prebiotic substance. This thesis contributes to the structural information on cereal AX and preparation of mono and doubly substituted AXOS from AX. Understanding the utilization strategies is fundamental in evaluating the prebiotic potential of AXOS. Further research is still required before AXOS can be used in applications for human consumption.
Resumo:
The work covered in this thesis is focused on the development of technology for bioconversion of glucose into D-erythorbic acid (D-EA) and 5-ketogluconic acid (5-KGA). The task was to show on proof-of-concept level the functionality of the enzymatic conversion or one-step bioconversion of glucose to these acids. The feasibility of both studies to be further developed for production processes was also evaluated. The glucose - D-EA bioconversion study was based on the use of a cloned gene encoding a D-EA forming soluble flavoprotein, D-gluconolactone oxidase (GLO). GLO was purified from Penicillium cyaneo-fulvum and partially sequenced. The peptide sequences obtained were used to isolate a cDNA clone encoding the enzyme. The cloned gene (GenBank accession no. AY576053) is homologous to the other known eukaryotic lactone oxidases and also to some putative prokaryotic lactone oxidases. Analysis of the deduced protein sequence of GLO indicated the presence of a typical secretion signal sequence at the N-terminus of the enzyme. No other targeting/anchoring signals were found, suggesting that GLO is the first known lactone oxidase that is secreted rather than targeted to the membranes of the endoplasmic reticulum or mitochondria. Experimental evidence supports this analysis, as near complete secretion of GLO was observed in two different yeast expression systems. Highest expression levels of GLO were obtained using Pichia pastoris as an expression host. Recombinant GLO was characterised and the suitability of purified GLO for the production of D-EA was studied. Immobilised GLO was found to be rapidly inactivated during D-EA production. The feasibility of in vivo glucose - D-EA conversion using a P. pastoris strain co-expressing the genes of GLO and glucose oxidase (GOD, E.C. 1.1.3.4) of A. niger was demonstrated. The glucose - 5-KGA bioconversion study followed a similar strategy to that used in the D-EA production research. The rationale was based on the use of a cloned gene encoding a membrane-bound pyrroloquinoline quinone (PQQ)-dependent gluconate 5-dehydrogenase (GA 5-DH). GA 5-DH was purified to homogeneity from the only source of this enzyme known in literature, Gluconobacter suboxydans, and partially sequenced. Using the amino acid sequence information, the GA 5-DH gene was cloned from a genomic library of G. suboxydans. The cloned gene was sequenced (GenBank accession no. AJ577472) and found to be an operon of two adjacent genes encoding two subunits of GA 5-DH. It turned out that GA 5-DH is a rather close homologue of a sorbitol dehydrogenase from another G. suboxydans strain. It was also found that GA 5-DH has significant polyol dehydrogenase activity. The G. suboxydans GA 5-DH gene was poorly expressed in E. coli. Under optimised conditions maximum expression levels of GA 5-DH did not exceed the levels found in wild-type G. suboxydans. Attempts to increase expression levels resulted in repression of growth and extensive cell lysis. However, the expression levels were sufficient to demonstrate the possibility of bioconversion of glucose and gluconate into 5-KGA using recombinant strains of E. coli. An uncharacterised homologue of GA 5-DH was identified in Xanthomonas campestris using in silico screening. This enzyme encoded by chromosomal locus NP_636946 was found by a sequencing project of X. campestris and named as a hypothetical glucose dehydrogenase. The gene encoding this uncharacterised enzyme was cloned, expressed in E. coli and found to encode a gluconate/polyol dehydrogenase without glucose dehydrogenase activity. Moreover, the X. campestris GA 5-DH gene was expressed in E. coli at nearly 30 times higher levels than the G. suboxydans GA 5-DH gene. Good expressability of the X. campestris GA-5DH gene makes it a valuable tool not only for 5-KGA production in the tartaric acid (TA) bioprocess, but possibly also for other bioprocesses (e.g. oxidation of sorbitol into L-sorbose). In addition to glucose - 5-KGA bioconversion, a preliminary study of the feasibility of enzymatic conversion of 5-KGA into TA was carried out. Here, the efficacy of the first step of a prospective two-step conversion route including a transketolase and a dehydrogenase was confirmed. It was found that transketolase convert 5-KGA into TA semialdehyde. A candidate for the second step was suggested to be succinic dehydrogenase, but this was not tested. The analysis of the two subprojects indicated that bioconversion of glucose to TA using X. campestris GA 5-DH should be prioritised first and the process development efforts in future should be focused on development of more efficient GA 5-DH production strains by screening a more suitable production host and by protein engineering.
Resumo:
Enzymes offer many advantages in industrial processes, such as high specificity, mild treatment conditions and low energy requirements. Therefore, the industry has exploited them in many sectors including food processing. Enzymes can modify food properties by acting on small molecules or on polymers such as carbohydrates or proteins. Crosslinking enzymes such as tyrosinases and sulfhydryl oxidases catalyse the formation of novel covalent bonds between specific residues in proteins and/or peptides, thus forming or modifying the protein network of food. In this study, novel secreted fungal proteins with sequence features typical of tyrosinases and sulfhydryl oxidases were iden-tified through a genome mining study. Representatives of both of these enzyme families were selected for heterologous produc-tion in the filamentous fungus Trichoderma reesei and biochemical characterisation. Firstly, a novel family of putative tyrosinases carrying a shorter sequence than the previously characterised tyrosinases was discovered. These proteins lacked the whole linker and C-terminal domain that possibly play a role in cofactor incorporation, folding or protein activity. One of these proteins, AoCO4 from Aspergillus oryzae, was produced in T. reesei with a production level of about 1.5 g/l. The enzyme AoCO4 was correctly folded and bound the copper cofactors with a type-3 copper centre. However, the enzyme had only a low level of activity with the phenolic substrates tested. Highest activity was obtained with 4-tert-butylcatechol. Since tyrosine was not a substrate for AoCO4, the enzyme was classified as catechol oxidase. Secondly, the genome analysis for secreted proteins with sequence features typical of flavin-dependent sulfhydryl oxidases pinpointed two previously uncharacterised proteins AoSOX1 and AoSOX2 from A. oryzae. These two novel sulfhydryl oxidases were produced in T. reesei with production levels of 70 and 180 mg/l, respectively, in shake flask cultivations. AoSOX1 and AoSOX2 were FAD-dependent enzymes with a dimeric tertiary structure and they both showed activity on small sulfhydryl compounds such as glutathione and dithiothreitol, and were drastically inhibited by zinc sulphate. AoSOX2 showed good stabil-ity to thermal and chemical denaturation, being superior to AoSOX1 in this respect. Thirdly, the suitability of AoSOX1 as a possible baking improver was elucidated. The effect of AoSOX1, alone and in combi-nation with the widely used improver ascorbic acid was tested on yeasted wheat dough, both fresh and frozen, and on fresh water-flour dough. In all cases, AoSOX1 had no effect on the fermentation properties of fresh yeasted dough. AoSOX1 nega-tively affected the fermentation properties of frozen doughs and accelerated the damaging effects of the frozen storage, i.e. giving a softer dough with poorer gas retention abilities than the control. In combination with ascorbic acid, AoSOX1 gave harder doughs. In accordance, rheological studies in yeast-free dough showed that the presence of only AoSOX1 resulted in weaker and more extensible dough whereas a dough with opposite properties was obtained if ascorbic acid was also used. Doughs containing ascorbic acid and increasing amounts of AoSOX1 were harder in a dose-dependent manner. Sulfhydryl oxidase AoSOX1 had an enhancing effect on the dough hardening mechanism of ascorbic acid. This was ascribed mainly to the produc-tion of hydrogen peroxide in the SOX reaction which is able to convert the ascorbic acid to the actual improver dehydroascorbic acid. In addition, AoSOX1 could possibly oxidise the free glutathione in the dough and thus prevent the loss of dough strength caused by the spontaneous reduction of the disulfide bonds constituting the dough protein network. Sulfhydryl oxidase AoSOX1 is therefore able to enhance the action of ascorbic acid in wheat dough and could potentially be applied in wheat dough baking.
Resumo:
Mycotoxins are secondary metabolites of filamentous fungi. They pose a health risk to humans and animals due to their harmful biological properties and common occurrence in food and feed. Liquid chromatography/mass spectrometry (LC/MS) has gained popularity in the trace analysis of food contaminants. In this study, the applicability of the technique was evaluated in multi-residue methods of mycotoxins aiming at simultaneous detection of chemically diverse compounds. Methods were developed for rapid determination of toxins produced by fungal genera of Aspergillus, Fusarium, Penicillium and Claviceps from cheese, cereal based agar matrices and grains. Analytes were extracted from these matrices with organic solvents. Minimal sample clean-up was carried out before the analysis of the mycotoxins with reversed phase LC coupled to tandem MS (MS/MS). The methods were validated and applied for investigating mycotoxins in cheese and ergot alkaloid occurrence in Finnish grains. Additionally, the toxin production of two Fusarium species predominant in northern Europe was studied. Nine mycotoxins could be determined from cheese with the method developed. The limits of quantification (LOQ) allowed the quantification at concentrations varying from 0.6 to 5.0 µg/kg. The recoveries ranged between 96 and 143 %, and the within-day repeatability (as relative standard deviation, RSDr) between 2.3 and 12.1 %. Roquefortine C and mycophenolic acid could be detected at levels of 300 up to 12000 µg/kg in the mould cheese samples analysed. A total of 29 or 31 toxins could be analysed with the method developed for agar matrices and grains, with the LOQs ranging overall from 0.1 to 1250 µg/kg. The recoveries ranged generally between 44 and 139 %, and the RSDr between 2.0 and 38 %. Type-A trichothecenes and beauvericin were determined from the cereal based agar and grain cultures of F. sporotrichioides and F. langsethiae. T-2 toxin was the main metabolite, the average levels reaching 22000 µg/kg in the grain cultures after 28 days of incubation. The method developed for ten ergot alkaloids from grains allowed their quantification at levels varying from 0.01 to 10 µg/kg. The recoveries ranged from 51 to 139 %, and the RSDr from 0.6 to 13.9 %. Ergot alkaloids were measured in barley and rye at average levels of 59 and 720 µg/kg, respectively. The two most prevalent alkaloids were ergocornine and ergocristine. The LC/MS methods developed enabled rapid detection of mycotoxins in such applications where several toxins co-occurred. Generally, the performance of the methods was good, allowing reliable analysis of the mycotoxins of interest with sufficiently low quantification limits. However, the variation in validation results highlighted the challenges related to optimising this type of multi-residue methods. New data was obtained about the occurrence of mycotoxins in mould cheeses and of ergot alkaloids in Finnish grains. In addition, the study revealed the high mycotoxin-producing potential of two common fungi in Finnish crops. The information can be useful when risks related to fungal and mycotoxin contamination will be assessed.