9 resultados para AQUEOUS-HUMOR
em Helda - Digital Repository of University of Helsinki
Resumo:
Glaucoma is a group of progressive optic neuropathies causing irreversible blindness if not diagnosed and treated in the early state of progression. Disease is often, but not always, associated with increased intraocular pressure (IOP), which is also the most important risk factor for glaucoma. Ophthlamic timolol preparations have been used for decades to lower increased intraocular pressure (IOP). Timolol is locally well tolerated but may cause e.g. cardiovascular and pulmonary adverse effects due to systemic absorption. It has been reported that approximately 80% of a topically administered eye drop is systemically absorbed. However, only limited information is available on timolol metabolism in the liver or especially in the human eye. The aim of this work was to investigate metabolism of timolol in human liver and human ocular tissues. The expression of drug metabolizing cytochrome P450 (CYP) enzymes in the human ciliary epithelial cells was studied. The metabolism of timolol and the interaction potential of timolol with other commercially available medicines were investigated in vitro using different liver preparations. The absorption of timolol to the aqueous humor from two commercially available products: 0.1% eye gel and 0.5% eye drops and the presence of timolol metabolites in the aqueous humor were investigated in a clinical trial. Timolol was confirmed to be metabolized mainly by CYP2D6 as previously suggested. Potent CYP2D6 inhibitors especially fluoxetine, paroxetine and quinidine inhibited the metabolism of timolol. The inhibition may be of clinical significance in patients using ophthalmic timolol products. CYP1A1 and CYP1B1 mRNAs were expressed in the human ciliary epithelial cells. CYP1B1 was also expressed at protein level and the expression was strongly induced by a known potent CYP1B1 inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The CYP1B1 induction is suggested to be mediated by aryl hydrocarbon receptor (AHR). Low levels of CYP2D6 mRNA splice variants were expressed in the human ciliary epithelial cells and very low levels of timolol metabolites were detected in the human aqueous humor. It seems that negligible amount of CYP2D6 protein is expressed in the human ocular tissues. Timolol 0.1% eye gel leads to aqueous humor concentration high enough to achieve therapeutic effect. Inter-individual variation in concentrations is low and intraocular as well as systemic safety can be increased when using this product with lower timolol concentration instead of timolol 0.5% eye drops.
Resumo:
Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.