7 resultados para AMP

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nicotine, the addictive compound of tobacco products, exerts its effects in the brain by binding to neuronal acetylcholine nicotinic receptors (nAChRs). The aim of the present study was to increase the knowledge of nicotine s complex effects, the focus being on homomeric alpha7-nAChRs that are widely expressed in the brain. Nicotinic regulation of differential signalling molecules including transcriptional regulators was also studied. We found that the number of alpha7-nAChRs is increased in specific brain regions in mice, in a time-dependent manner after chronic oral nicotine administration. Our results suggest that in addition to alpha4beta2-nAChRs, the other major nAChR subtype expressed in the brain, the number of alpha7-nAChRs is affected by chronic presence of nicotine. We suggest that when studying the long-term effects of nicotine, the duration on administration is of great importance. Next, we observed that nicotine exposure induces accumulation of cAMP in cell cultures expressing nAChRs. Furthermore, nicotine-induced alpha7-nAChR upregulation was potentiated by treatments enhancing cAMP-signalling, suggesting a role for cAMP in the upregulation process. Protein kinase C (PKC) was found essential for the basal regulation of alpha7-nAChR number. The nicotine-evoked alpha7-nAChR upregulation could be further increased by PKC overexpression. Thirdly, the effects of nicotine on dopamine and cAMP regulated phosphoprotein (DARPP-32) were characterised in rat brain. The results show that DARPP-32 is regulated by both acute and long-term nicotine treatment in the striatal subdivisions. The effect of acute nicotine is dose-dependent and the three striatal regions display differential sensitivities to nicotine. Chronic nicotine is also able to regulate DARPP-32 signalling with prominent effect seen in the nucleus accumbens (NAc), suggesting a role for DARPP-32 in the mediation of long-term effects of nicotine. Finally, the regulation of transcription factors Elk-1 and FosB/deltaFosB by nicotine was investigated. We found that Elk-1 is activated by acute nicotine selectively in the NAc core and hippocampal area CA1, whereas acute nicotine does not affect FosB/deltaFosB. Long-term intermittent or continuous nicotine increases the level of total Elk-1 in the same brain regions as acute nicotine. FosB/deltaFosB is also affected by chronic nicotine. Thus, similarly to other drugs of abuse, nicotine regulates transcriptional regulators Elk-1 and FosB/deltaFosB. These results bring further support for a common mechanism underlying the development of addiction. Nicotine s positive effects on learning and memory might involve the transcription factor Elk-1 based on the changes seen in the hippocampus, the key area in cognitive functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Parechoviruses (HPEV) belong to the family Picornaviridae of positive-stranded RNA viruses. Although the parechovirus genome shares the general properties of other picornaviruses, the genus has several unique features when compared to other family members. We found that HPEV1 attaches to αv integrins on the cell surface and is internalized through the clathrin-mediated endocytic pathway. During he course of the infection, the Golgi was found to disintegrate and the ER membranes to swell and loose their ribosomes. The replication of HPEV1 was found to take place on small clusters of vesicles which contained the trans-Golgi marker GalT as well as the viral non-structural 2C protein. 2C was additionally found on stretches of modified ER-membranes, seemingly not involved in RNA replication. The viral non-structural 2A and 2C proteins were studied in further detail and were found to display several interesting features. The 2A protein was found to be a RNA-binding protein that preferably binds to positive sense 3 UTR RNA. It was found to bind also duplex RNA containing 3 UTR(+)-3 UTR(-), but not other dsRNA molecules studied. Mutagenesis revealed that the N-terminal basic-rich region as well as the C-terminus, are important for RNA-binding. The 2C protein on the other hand, was found to have both ATP-diphosphohydrolase and AMP kinase activities. Neither dATP nor other NTP:s were suitable substrates. Furthermore, we found that as a result of theses activities the protein is autophosphorylated. The intracellular changes brought about by the individual HPEV1 non-structural proteins were studied through the expression of fusion proteins. None of the proteins expressed were able to induce membrane changes similar to those seen during HPEV1 infection. However, the 2C protein, which could be found on the surface of lipid droplets but also on diverse intracellular membranes, was partly relocated to viral replication complexes in transfected, superinfected cells. Although Golgi to ER traffic was arrested in HPEV1-infected cells, none of the individually expressed non-structural proteins had any visible effect on the anterograde membrane traffic. Our results suggest that the HPEV1 replication strategy is different from that of many other picornaviruses. Furthermore, this study shows how relatively small differences in genome sequence result in very different intracellular pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone is a mineralized tissue that enables multiple mechanical and metabolic functions to be carried out in the skeleton. Bone contains distinct cell types: osteoblasts (bone-forming cells), osteocytes (mature osteoblast that embedded in mineralized bone matrix) and the osteoclasts (bone-resorbing cells). Remodelling of bone begins early in foetal life, and once the skeleton is fully formed in young adults, almost all of the metabolic activity is in this form. Bone is constantly destroyed or resorbed by osteoclasts and then replaced by osteoblasts. Many bone diseases, i.e. osteoporosis, also known as bone loss, typically reflect an imbalance in skeletal turnover. The cyclic adenosine monophosphate (cAMP) and the cyclic guanosine monophosphate (cGMP) are second messengers involved in a variety of cellular responses to such extracellular agents as hormones and neurotransmitters. In the hormonal regulation of bone metabolism, i.e. via parathyroid hormone (PTH), parathyroid hormone-related peptide (PTHrp) and prostaglandin E2 signal via cAMP. cAMP and cGMP are formed by adenylate and guanylate cyclases and are degraded by phosphodiesterases (PDEs). PDEs determine the amplitudes of cyclic nucleotide-mediated hormonal responses and modulate the duration of the signal. The activities of the PDEs are regulated by multiple inputs from other signalling systems and are crucial points of cross-talk between the pathways. Food-derived bioactive peptides are reported to express a variety of functions in vivo. The angiotensin-converting enzymes (ACEs) are involved in the regulation of the specific maturation or degradation of a number of mammalian bioactive peptides. The bioactive peptides offer also a nutriceutical and a nutrigenomic aspect to bone cell biology. The aim of this study was to investigate the influence of PDEs and bioactive peptides on the activation and the differentiation of human osteoblast cells. The profile of PDEs in human osteoblast-like cells and the effect of glucocorticoids on the function of cAMP PDEs, were investigated at the mRNA and enzyme levels. The effects of PDEs on bone formation and osteoblast gene expression were determined with chemical inhibitors and siRNAs (short interfering RNAs). The influence of bioactive peptides on osteoblast gene expression and proliferation was studied at the mRNA and cellular levels. This work provides information on how PDEs are involved in the function and the differentiation of osteoblasts. The findings illustrate that gene-specific silencing with an RNA interference (RNAi) method is useful in inhibiting, the gene expression of specific PDEs and further, PDE7 inhibition upregulates several osteogenic genes and increases bALP activity and mineralization in human mesenchymal stem cells-derived osteoblasts. PDEs appear to be involved in a mechanism by which glucocorticoids affect cAMP signaling. This may provide a potential route in the formation of glucocorticoid-induced bone loss, involving the down-regulation of cAMP-PDE. PDEs may play an important role in the regulation of osteoblastic differentiation. Isoleucine-proline-proline (IPP), a bioactive peptide, possesses the potential to increase osteoblast proliferation, differentiation and signalling.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nybildning av blodkärl från tidigare existerande kärl, angiogenes, är ett väsentligt skede vid tumörtillväxt. Denna process regleras av bland annat tillväxtfaktorer, var av den vaskulära endoteliala tillväxtfaktorn har en central roll. Hämning av angiogenes kan ske antingen extracellulärt med hjälp av humaniserade monoklonala antikroppar eller intracellulärt med hjälp av småmolekylära hämmaren. Sunitinib är en småmolekylär multikinashämmare och inhiberar flera tyrosinkinasreceptorer som påverkar tumörtillväxten och metastasutvecklingen vid cancer. Sunitinibs främsta indikationer är gastrointestinala stromacellstumörer, metastaserad njurcellscancer och neuroendokrina tumörer i bukspottskörteln. Behandling med tyrosinkinashämmare orsakar biverkningar som hypertension, kardiotoxicitet och njursvikt, vilka antas bero på de hämmande effekterna på mål som inte är väsentliga för anti-cancer-aktiviteten (”off-target” biverkningar). Bland annat AMP-aktiverat proteinkinas (AMPK), ett kinas som upprätthåller metabolisk homeostas i hjärtat, inhiberas av sunitinib och antas framkalla kardiovaskulära biverkningar. För att reducera ”off-target” biverkningar strävar man till att hitta alternativ som minskar de skadliga effekterna utan att den terapeutiska aktiviteten försvagas. Bland annat ett begränsat kaloriintag har uppvisat skyddande effekt på hjärtat via mekanismer sammankopplade till ökad resistens mot oxidativ stress, inflammation och mitokondriell dysfunktion, samt avtagande apoptos och autofagi. Detta sker delvis genom aktivering av enzymet Sirt1. Syftet med den här studien var att undersöka ifall kaloribegränsning skyddar mot kardiovaskulära och renala biverkningar inducerade av sunitinib hos råttor. Dessutom studerades vilka signalkedjor i cellen som medverkar. I studien användes 40 spontant hypertensiva råttor samt 10 normotensiva Wistar-Kyoto råttor. Försöksdjuren delades in i fem grupper beroende på behandling; I WKY kontroll, II SHR kontroll, III SHR + kaloribegränsning 70 %, IV SHR + sunitinib 3 mg/kg och V SHR + sunitinib 3 mg/kg + kaloribegränsning 70 %. Behandlingsperioden var åtta veckor. Blodtrycket mättes varje vecka med svansmanchett, urinutsöndringen undersöktes vecka 4 och vecka 8 med metabolismburar, ultraljudsundersökning av hjärtat utfördes sista veckan och blodkärlens respons till acetylkolin och natriumnitroprussid studerades i samband med avlivning. Proteinerna Sirt1 och AMPK analyserades i hjärtat med Western blotting samt förekomsten av makrofagmarkören ED1 i njurarna med immunhistokemi. Studien visade att sunitinibdosen 3 mg/kg är mycket väl tolererbar hos råttor eftersom sunitinib inte orsakade högre blodtryck, kraftigare hypertrofi eller mer omfattande njurskada jämfört med obehandlade SHR- grupper. Utgående från resultaten kan man också konstatera att kaloribegränsningen har positiva kardiovaskulära effekter.