6 resultados para 3-D INVERSION
em Helda - Digital Repository of University of Helsinki
Resumo:
Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.
Resumo:
In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms
Resumo:
Megasphaera cerevisiae, Pectinatus cerevisiiphilus, Pectinatus frisingensis, Selenomonas lacticifex, Zymophilus paucivorans and Zymophilus raffinosivorans are strictly anaerobic Gram-stain-negative bacteria that are able to spoil beer by producing off-flavours and turbidity. They have only been isolated from the beer production chain. The species are phylogenetically affiliated to the Sporomusa sub-branch in the class "Clostridia". Routine cultivation methods for detection of strictly anaerobic bacteria in breweries are time-consuming and do not allow species identification. The main aim of this study was to utilise DNA-based techniques in order to improve detection and identification of the Sporomusa sub-branch beer-spoilage bacteria and to increase understanding of their biodiversity, evolution and natural sources. Practical PCR-based assays were developed for monitoring of M. cerevisiae, Pectinatus species and the group of Sporomusa sub-branch beer spoilers throughout the beer production process. The developed assays reliably differentiated the target bacteria from other brewery-related microbes. The contaminant detection in process samples (10 1,000 cfu/ml) could be accomplished in 2 8 h. Low levels of viable cells in finished beer (≤10 cfu/100 ml) were usually detected after 1 3 d culture enrichment. Time saving compared to cultivation methods was up to 6 d. Based on a polyphasic approach, this study revealed the existence of three new anaerobic spoilage species in the beer production chain, i.e. Megasphaera paucivorans, Megasphaera sueciensis and Pectinatus haikarae. The description of these species enabled establishment of phenotypic and DNA-based methods for their detection and identification. The 16S rRNA gene based phylogenetic analysis of the Sporomusa sub-branch showed that the genus Selenomonas originates from several ancestors and will require reclassification. Moreover, Z. paucivorans and Z. raffinosivorans were found to be in fact members of the genus Propionispira. This relationship implies that they were carried to breweries along with plant material. The brewery-related Megasphaera species formed a distinct sub-group that did not include any sequences from other sources, suggesting that M. cerevisiae, M. paucivorans and M. sueciensis may be uniquely adapted to the brewery ecosystem. M. cerevisiae was also shown to exhibit remarkable resistance against many brewery-related stress conditions. This may partly explain why it is a brewery contaminant. This study showed that DNA-based techniques provide useful tools for obtaining more rapid and specific information about the presence and identity of the strictly anaerobic spoilage bacteria in the beer production chain than is possible using cultivation methods. This should ensure financial benefits to the industry and better product quality to customers. In addition, DNA-based analyses provided new insight into the biodiversity as well as natural sources and relations of the Sporomusa sub-branch bacteria. The data can be exploited for taxonomic classification of these bacteria and for surveillance and control of contaminations.
Resumo:
The aim of this thesis was to study the seismic tomography structure of the earth s crust together with earthquake distribution and mechanism beneath the central Fennoscandian Shield, mainly in southern and central Finland. The earthquake foci and some fault plane solutions are correlated with 3-D images of the velocity tomography. The results are discussed in relation to the stress field of the Shield and with other geophysical, e.g. geomagnetic, gravimetric, tectonic, and anisotropy studies of the Shield. The earthquake data of the Fennoscandian Shield has been extracted from the Nordic earthquake parameter data base which was founded at the time of inception of the earthquake catalogue for northern Europe. Eight earlier earthquake source mechanisms are included in a pilot study on creating a novel technique for calculating an earthquake fault plane solution. Altogether, eleven source mechanisms of shallow, weak earthquakes are related in the 3-D tomography model to trace stresses of the crust in southern and central Finland. The earthquakes in the eastern part of the Fennoscandian Shield represent low-active, intraplate seismicity. Earthquake mechanisms with NW-SE oriented horizontal compression confirm that the dominant stress field originates from the ridge-push force in the North Atlantic Ocean. Earthquakes accumulate in coastal areas, in intersections of tectonic lineaments, in main fault zones or are bordered by fault lines. The majority of Fennoscandian earthquakes concentrate on the south-western Shield in southern Norway and Sweden. Onwards, epicentres spread via the ridge of the Shield along the west-coast of the Gulf of Bothnia northwards along the Tornio River - Finnmark fault system to the Barents Sea, and branch out north-eastwards via the Kuusamo region to the White Sea Kola Peninsula faults. The local seismic tomographic method was applied to find the terrane distribution within the central parts of the Shield the Svecofennian Orogen. From 300 local explosions a total of 19765 crustal Pg- and Sg-wave arrival times were inverted to create independent 3-D Vp and Vs tomographic models, from which the Vp/Vs ratio was calculated. The 3-D structure of the crust is presented as a P-wave and for the first time as an S-wave velocity model, and also as a Vp/Vs-ratio model of the SVEKALAPKO area that covers 700x800 km2 in southern and central Finland. Also, some P-wave Moho-reflection data was interpolated to image the relief of the crust-mantle boundary (i.e. Moho). In the tomography model, the seismic velocities vary smoothly. The lateral variations are larger for Vp (dVp =0.7 km/s) than for Vs (dVs =0.4 km/s). The Vp/Vs ratio varies spatially more distinctly than P- and S-wave velocities, usually from 1.70 to 1.74 in the upper crust and from 1.72 to 1.78 in the lower crust. Schist belts and their continuations at depth are associated with lower velocities and lower Vp/Vs ratios than in the granitoid areas. The tomography modelling suggests that the Svecofennian Orogen was accreted from crustal blocks ranging in size from 100x100 km2 to 200x200 km2 in cross-sectional area. The intervening sedimentary belts have ca. 0.2 km/s lower P- and S-wave velocities and ca. 0.04 lower Vp/Vs ratios. Thus, the tomographic model supports the concept that the thick Svecofennian crust was accreted from several crustal terranes, some hidden, and that the crust was later modified by intra- and underplating. In conclusion, as a novel approach the earthquake focal mechanism and focal depth distribution is discussed in relation to the 3-D tomography model. The schist belts and the transformation zones between the high- and low-velocity anomaly blocks are characterized by deeper earthquakes than the granitoid areas where shallow events dominate. Although only a few focal mechanisms were solved for southern Finland, there is a trend towards strike-slip and oblique strike-slip movements inside schist areas. The normal dip-slip type earthquakes are typical in the seismically active Kuusamo district in the NE edge of the SVEKALAPKO area, where the Archean crust is ca. 15-20 km thinner than the Proterozoic Svecofennian crust. Two near vertical dip-slip mechanism earthquakes occurred in the NE-SW junction between the Central Finland Granitoid Complex and the Vyborg rapakivi batholith, where high Vp/Vs-ratio deep-set intrusion splits the southern Finland schist belt into two parts in the tomography model.
Resumo:
Dynamics of raw milk associated bacteria during cold storage of raw milk and their antibiotic resistance was reviewed, with focus on psychrotrophic bacteria. This study aimed to investigate the significance of cold storage of raw milk on antibiotic-resistant bacterial population and analyse the antibiotic resistance of the Gram-negative antibiotic-resistant psychrotrophic bacteria isolated from the cold-stored raw milk samples. Twenty-four raw milk samples, six at a time, were obtained from lorries that collected milk from Finnish farms and were stored at 4°C/4 d, 6°C/3 d and 6°C/4 d. Antibiotics representing four classes of antibiotics (gentamicin, ceftazidime, levofloxacin and trimethoprim-sulfamethoxazole) were used to determine the antibiotic resistance of mesophilic and psychrotrophic bacteria during the storage period. A representative number of antibiotic-resistant Gram-negative isolates retrieved from the cold-stored raw milk samples were identified by the phenotypic API 20 NE system and a few isolates by the 16S rDNA gene sequencing. Some of the isolates were further evaluated for their antibiotic resistance by the ATB PSE 5 and HiComb system. The initial average mesophilic counts were found below 105 CFU/mL, suggesting that the raw milk samples were of good quality. However, the mesophilic and psychrotrophic population increased when stored at 4°C/4 d, 6°C/3 d and 6°C/4 d. Gentamicin- and levofloxacin-resistant bacteria increased moderately (P < 0.05) while there was a considerable rise (P < 0.05) of ceftazidime- and trimethoprim-sulfamethoxazole-resistant population during the cold storage. Of the 50.9 % (28) of resistant isolates (total 55) identified by API 20 NE, the majority were Sphingomonas paucimobilis (8), Pseudomonas putida (5), Sphingobacterium spiritivorum (3) and Acinetobacter baumanii (2). The analysis by ATB PSE 5 system suggested that 57.1% of the isolates (total 49) were multiresistant. This study showed that the dairy environment harbours multidrug-resistant Gramnegative psychrotrophic bacteria and the cold chain of raw milk storage amplifies the antibioticresistant psychrotrophic bacterial population.
Resumo:
Three strategically important uses of IT in the construction industry are the storage and management of project documents on webservers (EDM), the electronic handling of orders and invoices between companies (EDI) and the use of 3-D models including non-geometrical attributes for integrated design and construction (BIM). In a broad longitudinal survey study of IT use in the Swedish Construction Industry the extent of use of these techniques was measured in 1998, 2000 and 2007. The results showed that EDM and EDI are currently already well-established techniques whereas BIM, although it promises the biggest potential benefits to the industry, only seems to be at the beginning of adoption. In a follow-up to the quantitative studies, the factors affecting the decisions to implement EDM, EDI and BIM as well as the actual adoption processes, were studied using semi-structured interviews with practitioners. The theoretical basis for the interview studies was informed by theoretical frameworks from IT-adoption theory, where in particular the UTAUT model has provided the main basis for the analyses presented here. The results showed that the decisions to take the above technologies into use are made on three differ- ent levels: the individual level, the organizational level in the form of a company, and the organiza- tional level in the form of a project. The different patterns in adoption can to some part be explained by where the decisions are mainly taken. EDM is driven from the organisation/project level, EDI mainly from the organisation/company level, and BIM is driven by individuals pioneering the technique.