5 resultados para 1.3 MU-M

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transposable elements, transposons, are discrete DNA segments that are able to move or copy themselves from one locus to another within or between their host genome(s) without a requirement for DNA homology. They are abundant residents in virtually all the genomes studied, for instance, the genomic portion of TEs is approximately 3% in Saccharomyces cerevisiae, 45% in humans, and apparently more than 70% in some plant genomes such as maize and barley. Transposons plays essential role in genome evolution, in lateral transfer of antibiotic resistance genes among bacteria and in life cycle of certain viruses such as HIV-1 and bacteriophage Mu. Despite the diversity of transposable elements they all use a fundamentally similar mechanism called transpositional DNA recombination (transposition) for the movement within and between the genomes of their host organisms. The DNA breakage and joining reactions that underlie their transposition are chemically similar in virtually all known transposition systems. The similarity of the reactions is also reflected in the structure and function of the catalyzing enzymes, transposases and integrases. The transposition reactions take place within the context of a transposition machinery, which can be particularly complex, as in the case of the VLP (virus like particle) machinery of retroelements, which in vivo contains RNA or cDNA and a number of element encoded structural and catalytic proteins. Yet, the minimal core machinery required for transposition comprises a multimer of transposase or integrase proteins and their binding sites at the element DNA ends only. Although the chemistry of DNA transposition is fairly well characterized, the components and function of the transposition machinery have been investigated in detail for only a small group of elements. This work focuses on the identification, characterization, and functional studies of the molecular components of the transposition machineries of BARE-1, Hin-Mu and Mu. For BARE-1 and Hin-Mu transpositional activity has not been shown previously, whereas bacteriophage Mu is a general model of transposition. For BARE-1, which is a retroelement of barley (Hordeum vulgare), the protein and DNA components of the functional VLP machinery were identified from cell extracts. In the case of Hin-Mu, which is a Mu-like prophage in Haemophilus influenzae Rd genome, the components of the core machinery (transposase and its binding sites) were characterized and their functionality was studied by using an in vitro methodology developed for Mu. The function of Mu core machinery was studied for its ability to use various DNA substrates: Hin-Mu end specific DNA substrates and Mu end specific hairpin substrates. The hairpin processing reaction by MuA was characterized in detail. New information was gained of all three machineries. The components or their activity required for functional BARE-1 VLP machinery and retrotransposon life cycle were present in vivo and VLP-like structures could be detected. The Hin-Mu core machinery components were identified and shown to be functional. The components of the Mu and Hin-Mu core machineries were partially interchangeable, reflecting both evolutionary conservation and flexibility within the core machineries. The Mu core machinery displayed surprising flexibility in substrate usage, as it was able to utilize Hin-Mu end specific DNA substrates and to process Mu end DNA hairpin substrates. This flexibility may be evolutionarily and mechanistically important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of (1→3),(1→4)-β-D-glucans of oat bran, whole-grain oats and barley and processed foods were analysed. Various methods of hydrolysis of β-glucan, the content of insoluble fibre of whole grains of oats and barley and the solution behaviour of oat and barley β-glucans were studied. The isolated soluble β-glucans of oat bran and whole-grain oats and barley were hydrolysed with lichenase, an enzyme specific for (1→3),(1→4)-β-D-β-glucans. The amounts of oligosaccharides produced from bran were analysed with capillary electrophoresis and those from whole-grains with high-performance anion-exchange chromatography with pulse-amperometric detection. The main products were 3-O-β-cellobiosyl-D-glucose and 3-O-β-cellotriosyl-D-glucose, the oligosaccharides which have a degree of polymerisation denoted by DP3 and DP4. Small differences were detected between soluble and insoluble β-glucans and also between β-glucans of oats and barley. These differences can only be seen in the DP3:DP4 ratio which was higher for barley than for oat and also higher for insoluble than for soluble β-glucan. A greater proportion of barley β-glucan remained insoluble than of oat β-glucan. The molar masses of soluble β-glucans of oats and barley were the same as were those of insoluble β-glucans of oats and barley. To analyse the effects of cooking, baking, fermentation and drying, β-glucan was isolated from porridge, bread and fermentate and also from their starting materials. More β-glucan was released after cooking and less after baking. Drying decreased the extractability for bread and fermentate but increased it for porridge. Different hydrolysis methods of β-glucan were compared. Acid hydrolysis and the modified AOAC method gave similar results. The results of hydrolysis with lichenase gave higher recoveries than the other two. The combination of lichenase hydrolysis and high-performance anion-exchange chromatography with pulse-amperometric detection was found best for the analysis of β-glucan content. The content of insoluble fibre was higher for barley than for oats and the amount of β-glucan in the insoluble fibre fraction was higher for oats than for barley. The flow properties of both water and aqueous cuoxam solutions of oat and barley β-glucans were studied. Shear thinning was stronger for the water solutions of oat β-glucan than for barley β-glucan. In aqueous cuoxam shear thinning was not observed at the same concentration as in water but only with high concentration solutions. Then the viscosity of barley β-glucan was slightly higher than that of oat β-glucan. The oscillatory measurements showed that the crossover point of the G´ and G´´ curves was much lower for barley β-glucan than for oat β-glucan indicating a higher tendency towards solid-like behaviour for barley β-glucan than for oat β-glucan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmentally benign and economical methods for the preparation of industrially important hydroxy acids and diacids were developed. The carboxylic acids, used in polyesters, alkyd resins, and polyamides, were obtained by the oxidation of the corresponding alcohols with hydrogen peroxide or air catalyzed by sodium tungstate or supported noble metals. These oxidations were carried out using water as a solvent. The alcohols are also a useful alternative to the conventional reactants, hydroxyaldehydes and cycloalkanes. The oxidation of 2,2-disubstituted propane-1,3-diols with hydrogen peroxide catalyzed by sodium tungstate afforded 2,2-disubstituted 3-hydroxypropanoic acids and 1,1-disubstituted ethane-1,2-diols as products. A computational study of the Baeyer-Villiger rearrangement of the intermediate 2,2-disubstituted 3-hydroxypropanals gave in-depth data of the mechanism of the reaction. Linear primary diols having chain length of at least six carbons were easily oxidized with hydrogen peroxide to linear dicarboxylic acids catalyzed by sodium tungstate. The Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols and linear primary diols afforded the highest yield of the corresponding hydroxy acids, while the Pt, Bi/C catalyzed oxidation of the diols afforded the highest yield of the corresponding diacids. The mechanism of the promoted oxidation was best described by the ensemble effect, and by the formation of a complex of the hydroxy and the carboxy groups of the hydroxy acids with bismuth atoms. The Pt, Bi/C catalyzed air oxidation of 2-substituted 2-hydroxymethylpropane-1,3-diols gave 2-substituted malonic acids by the decarboxylation of the corresponding triacids. Activated carbon was the best support and bismuth the most efficient promoter in the air oxidation of 2,2-dialkylpropane-1,3-diols to diacids. In oxidations carried out in organic solvents barium sulfate could be a valuable alternative to activated carbon as a non-flammable support. In the Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols to 2,2-disubstituted 3-hydroxypropanoic acids the small size of the 2-substituents enhanced the rate of the oxidation. When the potential of platinum of the catalyst was not controlled, the highest yield of the diacids in the Pt, Bi/C catalyzed air oxidation of 2,2-dialkylpropane-1,3-diols was obtained in the regime of mass transfer. The most favorable pH of the reaction mixture of the promoted oxidation was 10. The reaction temperature of 40°C prevented the decarboxylation of the diacids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aikaisemman tutkimuksen perusteella tiedettiin tiettyjen 2,1,3-bentsoksadiatsolirakenteisten molekyylien olevan aktiivisia Chlamydia pneumoniae –bakteeria vastaan. Tutkimusta lähdettiin jatkamaan ja 2,1,3-bentsoksadiatsolimolekyylien rakenne-aktiivisuusuhteista haluttiin saada lisätietoa. Tarkoituksena oli kehittää 2,1,3-bentsoksadiatsolimolekyyleille ja sen avulla muodostaa molekyylikirjasto. Syntetisoidut molekyylit haluttiin testata sekä Chlamydia pneumoniae -bakteeria että Leishmania donovani –parasiittia vastaan. Chlamydia pneumoniae –bakteeri aiheuttaa akuutteja ylä- ja alahengitystieinfektiota, kuten keuhkoputkentulehdusta. Akuutissa tulehduksessa oireet vaihtelevat huomattavasti. Chlamydia pneumoniae –bakteerilla on myös taipumus aiheuttaa kroonisia tulehduksia. Nämä ovat useissa tutkimuksissa yhdistetty kansantaloudellisesti merkittäviin sairauksiin, kuten ateroskleroosiin ja astmaan. Leishmanioosi on toiseksi yleisin loissairaus ihmisellä malarian jälkeen. Leishmania donovani –parasiitti voi aiheuttaa tappavaa viskeraalista leishmanioosia. Vuodessa leishmanioosiin kuolee yli 50 000 ihmistä. Viime vuosina leishmanioosin lääkehoidossa on esiintynyt monenlaisia ongelmia. Osat lääkkeistä ovat menettäneet tehonsa ja osalla esiintyy vakavia haittavaikutuksia. 2,1,3-Bentsoksadiatsolirakenteisille yhdisteille saatiin kehitettyä toimiva synteesireitti. Lähtöaineena käytettiin 4-amino-2-nitrobentsoehappoa, josta saatiin hapettavalla renkaansulkeutumisreaktiolla 2,1,3-bentsoksadiatsoli-5-karboksyylihappoa. Karboksyylihaposta syntetisoitiin amidi-välituotteen kautta 2,1,3-bentsoksadiatsoli-5-karbonitriiliä. Hydroksyyliamiini hydrokloridin avulla 2,1,3-bentsoksadiatsoli-5-karbonitriilistä muodostettiin vastaavaa karboksimidamidia, joka oli synteesireitin yhteinen välituote kaikille molekyyleille. Viimeisessä vaiheessa N´-hydroksidi-2,1,3-bentsoksadiatsoli-5-karboksimidamidin annettiin reagoida joko fenyyli-isosyanaatin tai fenyyli-isotiosyanaatin kanssa, jolloin saatiin lopputuotetta. Synteesireitin kehittäminen osoittautui haastavaksi ja loppujen lopuksi saatiin ainoastaan kolme lopputuotetta syntetisoitua. Yksi lopputuotteista testattiin C. pneumoniae –bakteeria vastaan Åbo akademissa Turussa. Testattavaa yhdiste ei sisältänyt 2,1,3-bentsoksadiatsoliarengasta ja bioaktiivisuuskokeen tulos oli odotusten mukainen. Yhdiste ei ollut aktiivinen C. pneumoniae –bakteeria vastaan alhaisilla konsentraatioilla ja tuloksesta voitiin todeta 2,1,3-bentsoksadiatsolirengaan olevan tärkeä aktiivisuuden kannalta. Kaksi lopputuotetta saatiin testaukseen Leishamania donovani –parasiittia vastaan Israeliin. Ainoastaan toinen molekyyleistä sisälsi 2,1,3-bentsoksadiatsolirakenteen. Bioaktiivisuuskokeiden tulokset olivat erittäin rohkaisevia. Yhdisteet olivat aktiivisia parasiittia vastaan jo alhaisilla konsentraatioilla. Kuitenkin 2,1,3-bentsoksadiatsolirakenteinen molekyyli oli aktiivisempi, joten tämäkin aktiivisuuskokeen perusteella huomattiin rengasrakenteen olevan tärkeä aktiivisuuden kannalta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.