171 resultados para Molecular regimes
Resumo:
Carotid artery disease is the most prevalent etiologic precursor of ischemic stroke, which is a major health hazard and the second most common cause of death in the world. If a patient presents with a symptomatic high-grade (>70%) stenosis in the internal carotid artery, the treatment of choice is carotid endarterectomy. However, the natural course of radiologically equivalent carotid lesions may be clinically quite diverse, and the reason for that is unknown. It would be of utmost importance to develop molecular markers that predict the symptomatic phenotype of an atherosclerotic carotid plaque (CP) and help to differentiate vulnerable lesions from stable ones. The aim of this study was to investigate the morphologic and molecular factors that associate with stroke-prone CPs. In addition to immunohistochemistry, DNA microarrays were utilized to identify molecular markers that would differentiate between symptomatic and asymptomatic CPs. Endothelial adhesion molecule expression (ICAM-1, VCAM-1, P-selectin, and E-selectin) did not differ between symptomatic and asymptomatic patients. Denudation of endothelial cells was associated with symptom-generating carotid lesions, but in studies on the mechanism of decay of endothelial cells, markers of apoptosis (TUNEL, activated caspase 3) were found to be decreased in the endothelium of symptomatic lesions. Furthermore, markers of endothelial apoptosis were directly associated with those of cell proliferation (Ki-67) in all plaques. FasL expression was significantly increased on the endothelium of symptomatic CPs. DNA microarray analysis revealed prominent induction of specific genes in symptomatic CPs, including those subserving iron and heme metabolism, namely HO-1, and hemoglobin scavenger receptor CD163. HO-1 and CD163 proteins were also increased in symptomatic CPs and associated with intraplaque iron deposits, which, however, did not correlate with symptom status itself. ADRP, the gene for adipophilin, was also overexpressed in symptomatic CPs. Adipophilin expression was markedly increased in ulcerated CPs and colocalized with extravasated red blood cells and cholesterol crystals. Taken together, the phenotypic characteristics and the numerous possible molecular mediators of the destabilization of carotid plaques provide potential platforms for future research. The denudation of the endothelial lining observed in symptomatic CPs may lead to direct thromboembolism and maintain harmful oxidative and inflammatory processes, predispose to plaque microhemorrhages, and contribute to lipid accumulation into the plaque, thereby making it vulnerable to rupture.
Resumo:
Diffuse large B-cell lymphoma (DLBCL) is the most common of the non-Hodgkin lymphomas. As DLBCL is characterized by heterogeneous clinical and biological features, its prognosis varies. To date, the International Prognostic Index has been the strongest predictor of outcome for DLBCL patients. However, no biological characters of the disease are taken into account. Gene expression profiling studies have identified two major cell-of-origin phenotypes in DLBCL with different prognoses, the favourable germinal centre B-cell-like (GCB) and the unfavourable activated B-cell-like (ABC) phenotypes. However, results of the prognostic impact of the immunohistochemically defined GCB and non-GCB distinction are controversial. Furthermore, since the addition of the CD20 antibody rituximab to chemotherapy has been established as the standard treatment of DLBCL, all molecular markers need to be evaluated in the post-rituximab era. In this study, we aimed to evaluate the predictive value of immunohistochemically defined cell-of-origin classification in DLBCL patients. The GCB and non-GCB phenotypes were defined according to the Hans algorithm (CD10, BCL6 and MUM1/IRF4) among 90 immunochemotherapy- and 104 chemotherapy-treated DLBCL patients. In the chemotherapy group, we observed a significant difference in survival between GCB and non-GCB patients, with a good and a poor prognosis, respectively. However, in the rituximab group, no prognostic value of the GCB phenotype was observed. Likewise, among 29 high-risk de novo DLBCL patients receiving high-dose chemotherapy and autologous stem cell transplantation, the survival of non-GCB patients was improved, but no difference in outcome was seen between GCB and non-GCB subgroups. Since the results suggested that the Hans algorithm was not applicable in immunochemotherapy-treated DLBCL patients, we aimed to further focus on algorithms based on ABC markers. We examined the modified activated B-cell-like algorithm based (MUM1/IRF4 and FOXP1), as well as a previously reported Muris algorithm (BCL2, CD10 and MUM1/IRF4) among 88 DLBCL patients uniformly treated with immunochemotherapy. Both algorithms distinguished the unfavourable ABC-like subgroup with a significantly inferior failure-free survival relative to the GCB-like DLBCL patients. Similarly, the results of the individual predictive molecular markers transcription factor FOXP1 and anti-apoptotic protein BCL2 have been inconsistent and should be assessed in immunochemotherapy-treated DLBCL patients. The markers were evaluated in a cohort of 117 patients treated with rituximab and chemotherapy. FOXP1 expression could not distinguish between patients, with favourable and those with poor outcomes. In contrast, BCL2-negative DLBCL patients had significantly superior survival relative to BCL2-positive patients. Our results indicate that the immunohistochemically defined cell-of-origin classification in DLBCL has a prognostic impact in the immunochemotherapy era, when the identifying algorithms are based on ABC-associated markers. We also propose that BCL2 negativity is predictive of a favourable outcome. Further investigational efforts are, however, warranted to identify the molecular features of DLBCL that could enable individualized cancer therapy in routine patient care.
Resumo:
Childhood-onset mitochondrial diseases comprise a heterogeneous group of disorders, which may manifest with almost any symptom and affect any tissue or organ. Due to challenging diagnostics, most children still lack a specific aetiological diagnosis. The aim of this thesis was to find molecular causes for childhood-onset mitochondrial disorders in Finland. We identified the underlying cause for 25 children, and found three new diseases, which had not been diagnosed in Finland before. These diseases caused severe progressive infantile-onset encephalomyopathies, and were due to defects in mitochondrial DNA (mtDNA) maintenance. Furthermore, the thesis provides the molecular background of Finnish patients with ‘leukoencephalopathy with brain stem and spinal cord involvement and elevated brain lactate’ (LBSL). A new phenotype was identified to be due to mutations in Twinkle, resembling ‘infantile onset spinocerebellar ataxia’ (IOSCA). These mutations caused mtDNA depletion in the liver, thus confirming the essential role of Twinkle in mtDNA maintenance, and expanding the molecular background of mtDNA depletion syndromes. The major aetiology for infantile mitochondrial myopathy in Finland was discovered to be due to mutations in thymidine kinase 2 (TK2). A novel mutation with Finnish ancestry was identified, and a genotype-phenotype correlation with mutation-specific distribution of tissue involvement was found, thus proving that deficient TK2 may cause multi-tissue depletion and impair neuronal function. This work established the molecular diagnosis and advanced the knowledge of phenotypes among paediatric patients with polymerase gamma (POLG) mutations. The patients showed severe early-onset encephalopathy with intractable epilepsy. POLG mutations are not a prevalent cause of children’s ataxias, although ataxia is a major presenting symptom among adults. Our findings indicate that POLG mutations should be investigated even if typical MRI, histochemical or biochemical abnormalities are lacking. LBSL patients showed considerable variation in phenotype despite identical mutations. A common, most likely European, ancestry, and a relative high carrier frequency of these mutations in Finland were discovered; suggesting that LBSL may be a quite common leukoencephalopathy in other populations as well. The results suggest that MRI findings are so unique that the diagnosis of LBSL is possible to make without genetic studies. This thesis work has resulted in identification of new mitochondrial disorders in Finland, enhancing the understanding of the clinical variability and the importance of tissue-specificity of these disorders. In addition to providing specific diagnosis to the patients, these findings give light to the underlying pathogenetic mechanisms of childhood-onset mitochondrial disorders.
Resumo:
Prostate cancer (PCa) is the most commonly diagnosed non-skin cancer and second leading cause of cancer-related death of men in developed countries. Measurement of prostate specific antigen (PSA) is a very sensitive method for diagnosing and monitoring of prostate cancer (PCa), but the specificity needs improvement. Measurements of different molecular forms of PSA have been shown to improve differentiation between PCa and benign prostatic diseases. However, accurate measurement of some isoforms has not been achieved in previous assays. The aim of the present study was to develop new assays that reliably measure enzymatically active PSA, PSA-α1-chymotryposin (PSA-ACT) and PSA-α1-protease inhibitor (PSA-API), and to evaluate their diagnostic value. Double-label immunofluorometric assays using a novel monoclonal antibody (MAb) and another antibody to either free PSA (fPSA) or total PSA (tPSA) were developed and used to measure PSA-ACT and fPSA or tPSA at the same time. These assays provide enough sensitivity for measurement of PSA-ACT in sera with low PSA levels. The results obtained confirmed that proportion of PSA-ACT to tPSA (%PSA-ACT) was as useful as proportion of fPSA to tPSA (%fPSA) for discrimination between PCa and benign prostatic hyperplasia (BPH). We developed an immunoassay for detection of PSA-API based on proximity ligation, which improved assay sensitivity 10-fold compared with conventional assays. Our results confirmed previous findings that the PSA-API level is somewhat lower in men with than without PCa, and the combination of %fPSA and proportion of PSA-API to tPSA (%PSA-API) provides diagnostic improvement compared with either method alone. Assays based on this principle should be applicable to other immunoassays in which the nonspecific background is a problem. An immunopeptidometric sandwich assay (IPMA) was developed to measure the enzymatically active PSA. This assay showed high specificity, but sensitivity was not good enough for measurement of PSA concentrations in the gray zone, 2-10 µg/L, in which tPSA does not efficiently differentiate between PCa and BPH. We further developed a solid-phase proximity ligation immunoassay, which provided a 10-fold improvement in sensitivity. This proof of concept study shows that peptides reacting with proteins are potentially useful for sensitive and specific measurement of protein variants for which specific MAbs cannot be obtained.
Resumo:
Acute intermittent porphyria (AIP, MIM #176000) is an inherited metabolic disease due to a partial deficiency of the third enzyme, hydroxymethylbilane synthase (HMBS, EC: 4.3.1.8), in the haem biosynthesis. Neurological symptoms during an acute attack, which is the major manifestation of AIP, are variable and relatively rare, but may endanger a patient's life. In the present study, 12 Russian and two Finnish AIP patients with severe neurological manifestations during an acute attack were studied prospectively from 1995 to 2006. Autonomic neuropathy manifested as abdominal pain (88%), tachycardia (94%), hypertension (75%) and constipation (88%). The most common neurological sign was acute motor peripheral neuropathy (PNP, 81%) often associated with neuropathic sensory loss (54%) and CNS involvement (85%). Despite heterogeneity of the neurological manifestations in our patients with acute porphyria, the major pattern of PNP associated with abdominal pain, dysautonomia, CNS involvement and mild hepatopathy could be demonstrated. If more strict inclusion criteria for biochemical abnormalities (>10-fold increase in excretion of urinary PBG) are applied, neurological manifestations in an acute attack are probably more homogeneous than described previously, which suggests that some of the neurological patients described previously may not have acute porphyria but rather secondary porphyrinuria. Screening for acute porphyria using urinary PBG is useful in a selected group of neurological patients with acute PNP or encephalopathy and seizures associated with pain and dysautonomia. Clinical manifestations and the outcome of acute attacks were used as a basis for developing a 30-score scale of the severity of an acute attack. This scale can easily be used in clinical practice and to standardise the outcome of an attack. Degree of muscle weakness scored by MRC, prolonged mechanical ventilation, bulbar paralysis, impairment of consciousness and hyponatraemia were important signs of a poor prognosis. Arrhythmia was less important and autonomic dysfunction, severity of pain and mental symptoms did not affect the outcome. The delay in the diagnosis and repeated administrations of precipitating factors were the main cause of proceeding of an acute attack into pareses and severe CNS involvement and a fatal outcome in two patients. Nerve conduction studies and needle EMG were performed in eleven AIP patients during an acute attack and/or in remission. Nine patients had severe PNP and two patients had an acute encephalopathy but no clinically evident PNP. In addition to axonopathy, features suggestive of demyelination could be demonstrated in patients with severe PNP during an acute attack. PNP with a moderate muscle weakness was mainly pure axonal. Sensory involvement was common in acute PNP and could be subclinical. Decreased conduction velocities with normal amplitudes of evoked potentials during acute attacks with no clinically evident PNP indicated subclinical polyneuropathy. Reversible symmetrical lesions comparable with posterior reversible encephalopathy syndrome (PRES) were revealed in two patients' brain CT or MRI during an acute attack. In other five patients brain MRI during or soon after the symptoms was normal. The frequency of reversible brain oedema in AIP is probably under-estimated since it may be short-lasting and often indistinguishable on CT or MRI. In the present study, nine different mutations were identified in the HMBS gene in 11 unrelated Russian AIP patients from North Western Russia and their 32 relatives. AIP was diagnosed in nine symptom-free relatives. The majority of the mutations were family-specific and confirmed allelic heterogeneity also among Russian AIP patients. Three mutations, c.825+5G>C, c.825+3_825+6del and c.770T>C, were novel. Six mutations, c.77G>A (p.R26H), c.517C>T (p.R173W), c.583C>T (p.R195C), c.673C>T (p.R225X), c.739T>C (p.C247R) and c.748G>C (p.E250A), have previously been identified in AIP patients from Western and other Eastern European populations. The effects of novel mutations were studied by amplification and sequencing of the reverse-transcribed total RNA obtained from the patients' lymphoblastoid or fibroblast cell lines. The mutations c.825+5G>C and c.770T>C resulted in varyable amounts of abnormal transcripts, r.822_825del (p.C275fsX2) and [r.770u>c, r.652_771del, r.613_771del (p.L257P, p.G218_L257del, p.I205_L257del)]. All mutations demonstrated low residual activities (0.1-1.3 %) when expressed in COS-1 cells confirming the causality of the mutations and the enzymatic defect of the disease. The clinical outcome, prognosis and correlation between the HMBS genotype and phenotype were studied in 143 Finnish and Russian AIP patients with ten mutations (c.33G>T, c.97delA, InsAlu333, p.R149X, p.R167W, p.R173W, p.R173Q, p.R225G, p.R225X, c.1073delA) and more than six patients in each group. The patients were selected from the pool of 287 Finnish AIP patients presented in a Finnish Porphyria Register (1966-2003) and 23 Russian AIP patients (diagnosed 1995-2003). Patients with the p.R167W and p.R225G mutations showed lower penetrance (19% and 11%) and the recurrence rate (33% and 0%) in comparison to the patients with other mutations (range 36 to 67% and 0 to 66%, respectively), as well as milder biochemical abnormalities [urinary porphobilinogen 47±10 vs. 163±21 mol/L, p<0.001; uroporphyrin 130±40 vs. 942±183 nmol/L, p<0.001] suggesting a milder form of AIP in these patients. Erythrocyte HMBS activity did not correlate with the porphobilinogen excretion in remission or the clinical of the disease. In all AIP severity patients, normal PBG excretion predicted freedom from acute attacks. Urinary PBG excretion together with gender, age at the time of diagnosis and mutation type could predict the likelihood of acute attacks in AIP patients.
Resumo:
Congenital nephrotic syndrome of the Finnish type (NPHS1, CNF) is an autosomal recessive disease, enriched in the Finnish population. NPHS1 is caused by a mutation in the NPHS1 gene. This gene encodes for nephrin, which is a major structural component of the slit diaphragm connecting podocyte foot processes in the glomerular capillary wall. In NPHS1, the genetic defect in nephrin leads to heavy proteinuria already in the newborn period. Finnish NPHS1 patients are nephrectomized at infancy, and after a short period of dialysis the patients receive a kidney transplant, which is the only curative therapy for the disease. In this thesis, we examined the cellular and molecular mechanisms leading to the progression of glomerulosclerosis and tubulointerstitial fibrosis in NPHS1 kidneys. Progressive mesangial expansion in NPHS1 kidneys is caused by mesangial cell hyperplasia and the accumulation of extracellular matrix proteins. Expansion of the extracellular matrix was caused by the normal mesangial cell component, collagen IV. However, no significant changes in mesangial cell phenotype or extracellular matrix component composition were observed. Endotheliosis was the main ultrastructural lesion observed in the endothelium of NPHS1 glomeruli. The abundant expression of vascular endothelial growth factor and its transcription factor hypoxia inducible factor-1 alpha were in accordance with the preserved structure of the endothelium in NPHS1 kidneys. Hypoperfusion of peritubular capillaries and tubulointerstitial hypoxia were evident in NPHS1 kidneys, indicating that these may play an important role in the rapid progression of fibrosis in the kidneys of NPHS1 patients. Upregulation of Angiotensin II was obvious, emphasizing its role in the pathophysiology of NPHS1. Excessive oxidative stress was evident in NPHS1 kidneys, manifested as an increase expression of p22phox, superoxide production, lipid oxide peroxidation and reduced antioxidant activity. In conclusion, our data indicate that mesangial cell proliferation and the accumulation of extracellular matrix accumulation are associated with the obliteration of glomerular capillaries, causing the reduction of circulation in peritubular capillaries. The injury and rarefaction of peritubular capillaries result in impairment of oxygen and nutrient delivery to the tubuli and interstitial cells, which correlates with the fibrosis, tubular atrophy and oxidative stress observed in NPHS1 kidneys.