152 resultados para boreal forests
Resumo:
Nature-based tourism is one of the fastest growing tourism sectors at the moment. It is also the form of tourism that often benefits the economy of rural areas. In addition to state owned forests, nature-based tourism is in many countries situated in private forests, which are not owned by entrepreneurs themselves. Therefore, the ownership issues and property rights form central challenges for the business activities. The maintenance of good relationships between private forest owners and entrepreneurs, as well as combining their interests, becomes vital. These relationships are typically exceptionally asymmetrical, granting the forest owner unilateral rights regulating the business activities in their forests. Despite this, the co-operation is typically very informal and the existing economic compensation models do not necessarily cover all the forest owners’ costs. The ownership issues bring their own characteristics to the relationship. Therefore, we argue that different aspects of ownership, especially psychological ones, have to be more critically examined and taken into consideration in order to build truly successful relations between these parties. This is crucial for sustaining the business activities. The core of psychological ownership is the sense of possession. Psychological ownership can be defined as a state, in which individuals perceive the target of ownership, the object or idea, as “theirs”. The concept of psychological ownership has so far been mainly used in the context of professional organizations. In this research, it has been used to explain the relationships between private forest owners and nature-based entrepreneurs. The aim of this study is to provide new information concerning the effect of psychological ownership on the collaboration and to highlight the good practices. To address the complexity of the phenomenon, qualitative case study methods were adopted to understand the role of ownership at the level of subjective experience. The empirical data was based on 27 in-depth interviews with private forest owners and nature-based tourism entrepreneurs. The data was analysed by using the methods of qualitative analysis to construct different typologies to describe the essence of successful collaboration. As a result of the study, the special characteristics and the practical level expressions of the psychological ownership in the privately owned forest context were analysed. Four different strategies to perceive these ownership characteristics in co-operation relationships were found. By taking the psychological ownership into consideration via these strategies, the nature-based entrepreneurs aim to balance the co-operation relationship and minimise the risks in long term activities based on privately owned forests.
Resumo:
Forest certification has been put forward as a means to improve the sustainability of forest management in the tropical countries, where traditional environmental regulation has been inefficient in controlling forest degradation and deforestation. In these countries, the role of communities as managers of the forest resources is rapidly increasing. However, only a fraction of tropical community forests have been certified and little is known about the impacts of certification in these systems. Two areas in Honduras where community-managed forest operations had received FSC certifications were studied. Río Cangrejal represents an area with a longer history of use, whereas Copén is a more recent forest operation. Ecological sustainability was assessed through comparing timber tree regeneration and floristic composition between certified, conventionally managed and natural forests. Data on woody vegetation and environmental conditions was collected within logging gaps and natural treefall gaps. The regeneration success of shade-tolerant timber tree species was lower in certified than in conventionally managed forests in Río Cangrejal. Furthermore, the floristic composition was more natural-like in the conventionally managed than the certified forests. However, the environmental conditions indicated reduced logging disturbance in the certified forests. Data from Copén demonstrated that the regeneration success of light-demanding timber species was higher in the certified than the unlogged forests. In spite of this, the most valuable timber species Swietenia macrophylla was not regenerating successfully in the certified forests, due to rapid gap closure. The results indicate that pre-certification loggings and forest fragmentation may have a stronger impact on forest regeneration than current, certified management practices. The focus in community forests under low-intensive logging should be directed toward landscape connectivity and the restoration of degraded timber species, instead of reducing mechanical logging damage. Such actions are dependent on better recognition of resource rights, and improving the status of small Southern producers in the markets of certified wood products.
Resumo:
Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.
Resumo:
"We used PCR-DGGE fingerprinting and direct sequencing to analyse the response of fungal and actinobacterial communities to changing hydrological conditions at 3 different sites in a boreal peatland complex in Finland. The experimental design involved a short-term (3 years; STD) and a long-term (43 years; LTD) water-level drawdown. Correspondence analyses of DGGE bands revealed differences in the communities between natural sites representing the nutrient-rich mesotrophic fen, the nutrient-poorer oligotrophic fen, and the nutrient-poor ombrotrophic bog. Still, most fungi and actinobacteria found in the pristine peatland seemed robust to the environmental variables. Both fungal and actinobacterial diversity was higher in the fens than in the bog. Fungal diversity increased significantly after STD whereas actinobacterial diversity did not respond to hydrology. Both fungal and actinobacterial communities became more similar between peatland types after LTD, which was not apparent after STD. Most sequences clustered equally between the two main fungal phyla Ascomycota and Basidiomycota. Sequencing revealed that basidiomycetes may respond more (either positively or negatively) to hydrological changes than ascomycetes. Overall, our results suggest that fungal responses to water-level drawdown depend on peatland type. Actinobacteria seem to be less sensitive to hydrological changes, although the response of some may similarly depend on peatland type. (C) 2009 Elsevier Ltd. All rights reserved."
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
The physical properties of surface soil horizons, essentially pore size, shape, continuity and affinity for water, regulate water entry into the soil. These properties are prone to changes caused by natural forces and human activity. The hydraulic properties of the surface soil greatly impact the generation of surface runoff and accompanied erosion, the major concern of agricultural water protection. The general target of this thesis was to improve our understanding of the structural and hydraulic properties of boreal clay soils. Physical properties of a clayey surface soil (0 - 10 cm, clay content 51%), with a micaceous/illitic mineralogy subjected to three different management practices of perennial vegetation, were studied. The study sites were vegetated buffer zones located side by side in SW Finland: 1) natural vegetation with no management, 2) harvested once a year, and 3) grazed by cattle. The soil structure, hydraulic properties, shrinkage properties and soil water repellency were determined at all sites. Two distinct flow domains were evident. The surface soil was characterized by subangular blocky, angular blocky and platy aggregates. Hence, large, partially accommodated, irregular elongated pores dominated the macropore domain at all sites. The intra-aggregate pore system was mostly comprised of pores smaller than 30 μm, which are responsible for water storage. Macropores at the grazed site, compacted by hoof pressure, were horizontally oriented and pore connectivity was poorest, which decreased water and air flux compared with other sites. Drying of the soil greatly altered its structure. The decrease in soil volume between wet and dry soil was 7 - 10%, most of which occurred in the moisture range of field conditions. Structural changes, including irreversible collapse of interaggregate pores, began at matric potentials around -6 kPa indicating, instability of soil structure against increasing hydraulic stress. Water saturation and several freezethaw cycles between autumn and spring likely weakened the soil structure. Soil water repellency was observed at all sites at the time of sampling and when soil was dryer than about 40 vol.%. (matric potential < -6 kPa). Therefore, water repellency contributes to water flow over a wide moisture range. Water repellency was also observed in soils with low organic carbon content (< 2%), which suggests that this phenomenon is common in agricultural soils of Finland due to their relatively high organic carbon content. Aggregate-related pedofeatures of dense infillings described as clay intrusions were found at all sites. The formation of these intrusions was attributed to clay dispersion and/or translocation during spring thaw and drying of the suspension in situ. These processes generate very new aggregates whose physical properties are most probably different from those of the bulk soil aggregates. Formation of the clay infillings suggested that prolonged wetness in autumn and spring impairs soil structure due to clay dispersion, while on the other hand it contributes to the pedogenesis of the soil. The results emphasize the dynamic nature of the physical properties of clay soils, essentially driven by their moisture state. In a dry soil, fast preferential flow is favoured by abundant macropores including shrinkage cracks and is further enhanced by water repellency. Increase in soil moisture reduces water repellency, and swelling of accommodated pores lowers the saturated hydraulic conductivity. Moisture- and temperature-related processes significantly alter soil structure over a time span of 1 yr. Thus, the pore characteristics as well as the hydraulic properties of soil are time-dependent.
Resumo:
In Taita Hills, south-eastern Kenya, remnants of indigenous mountain rainforests play a crucial role as water towers and socio-cultural sites. They are pressurized due to poverty, shortage of cultivable land and the fading of traditional knowledge. This study examines the traditional ecological knowledge of Taitas and the ways it may be applied within transforming natural resource management regimes. I have analyzed some justifications for and hindrances to ethnodevelopment and participatory forest management in light of recently renewed Kenyan forest policies. Mixed methods were applied by combining an ethnographic approach with participatory GIS. I learned about traditionally protected forests and their ecological and cultural status through a seek out the expert method and with remote sensing data and tools. My informants were: 107 household interviewees, 257 focus group participants, 73 key informants and 87 common informants in participatory mapping. Religious leaders and state officials shared their knowledge for this study. I have gained a better understanding of the traditionally protected forests and sites through examining their ecological characteristics and relation to social dynamics, by evaluating their strengths and hindrances as sites for conservation of cultural and biological diversity. My results show that, these sites are important components of a complex socio-ecological system, which has symbolical status and sacred and mystical elements within it, that contributes to the connectivity of remnant forests in the agroforestry dominated landscape. Altogether, 255 plant species and 220 uses were recognized by the tradition experts, whereas 161 species with 108 beneficial uses were listed by farmers. Out of the traditionally protected forests studied 47 % were on private land and 23% on community land, leaving 9% within state forest reserves. A paradigm shift in conservation is needed; the conservation area approach is not functional for private lands or areas trusted upon communities. The role of traditionally protected forests in community-based forest management is, however, paradoxal, since communal approaches suggests equal participation of people, whereas management of these sites has traditionally been the duty of solely accredited experts in the village. As modernization has gathered pace such experts have become fewer. Sacredness clearly contributes but, it does not equal conservation. Various social, political and economic arrangements further affect the integrity of traditionally protected forests and sites, control of witchcraft being one of them. My results suggest that the Taita have a rich traditional ecological knowledge base, which should be more determinately integrated into the natural resource management planning processes.
Resumo:
Fire is an important driver of the boreal forest ecosystem, and a useful tool for the restoration of degraded forests. However, we lack knowledge on the ecological processes initiated by prescribed fires, and whether they bring about the desired restoration effects. The purpose of this study was to investigate the impacts of low-intensity experimental prescribed fires on four ecological processes in young commercial Scots pine (Pinus sylvestris) stands eight years after the burning. The processes of interest were tree mortality, dead wood creation, regeneration and fire scar formation. These were inventoried in twelve study plots, which were 30 m x 30 m in size. The plots belonged to two different stand age classes: 30-35 years or 45 years old at the time of burning. The study was partly a follow-up of study plots researched by Sidoroff et al. (2007) one year after burning in 2003. Tree mortality increased from 183 stems ha-1 in 2003 to 259 stems ha-1 in 2010, corresponding to 15 % and 21 % of stem number respectively. Most mortality was experienced in the stands of the younger age class, in smaller diameter classes and among species other than Scots pine. By 2010, the average mortality of Scots pine per plot was 18%, but varied greatly ranging from 0% to 63% of stem number. Delayed mortality, i.e. mortality that occurred between 2 and 8 years after fire, seemed to become more important with increasing diameter. The input of dead wood also varied greatly between plots, from none to 72 m3 ha-1, averaging at 12 m3 ha-1. The amount of fire scarred trees per plot ranged from none to 20 %. Four out of twelve plots (43 %) did not have any fire scars. Scars were on average small: 95% of scars were less than 4 cm in width, and 75% less than 40 cm in length. Owing to the light nature of the fire, the remaining overstorey and thick organic layer, regeneration was poor overall. The abundance of pine and other seedlings indicated a viable seed source existed, but the seedlings failed to establish under dense canopy. The number of saplings ranged from 0 to 12 333 stems ha-1. The results of this study indicate that a low intensity fire does not necessarily initiate the ecological processes of tree mortality, dead wood creation and regeneration in the desired scale. Fire scars, which form the basis of fire dating in fire history studies, did not form in all cases.
Resumo:
The loss and degradation of forest cover is currently a globally recognised problem. The fragmentation of forests is further affecting the biodiversity and well-being of the ecosystems also in Kenya. This study focuses on two indigenous tropical montane forests in the Taita Hills in southeastern Kenya. The study is a part of the TAITA-project within the Department of Geography in the University of Helsinki. The study forests, Ngangao and Chawia, are studied by remote sensing and GIS methods. The main data includes black and white aerial photography from 1955 and true colour digital camera data from 2004. This data is used to produce aerial mosaics from the study areas. The land cover of these study areas is studied by visual interpretation, pixel-based supervised classification and object-oriented supervised classification. The change of the forest cover is studied with GIS methods using the visual interpretations from 1955 and 2004. Furthermore, the present state of the study forests is assessed with leaf area index and canopy closure parameters retrieved from hemispherical photographs as well as with additional, previously collected forest health monitoring data. The canopy parameters are also compared with textural parameters from digital aerial mosaics. This study concludes that the classification of forest areas by using true colour data is not an easy task although the digital aerial mosaics are proved to be very accurate. The best classifications are still achieved with visual interpretation methods as the accuracies of the pixel-based and object-oriented supervised classification methods are not satisfying. According to the change detection of the land cover in the study areas, the area of indigenous woodland in both forests has decreased in 1955 2004. However in Ngangao, the overall woodland area has grown mainly because of plantations of exotic species. In general, the land cover of both study areas is more fragmented in 2004 than in 1955. Although the forest area has decreased, forests seem to have a more optimistic future than before. This is due to the increasing appreciation of the forest areas.
Resumo:
In lake-rich regions, the gathering of information about water quality is challenging because only a small proportion of the lakes can be assessed each year by conventional methods. One of the techniques for improving the spatial and temporal representativeness of lake monitoring is remote sensing from satellites and aircrafts. The experimental material included detailed optical measurements in 11 lakes, air- and spaceborne remote sensing measurements with concurrent field sampling, automatic raft measurements and a national dataset of routine water quality measurements from over 1100 lakes. The analyses of the spatially high-resolution airborne remote sensing data from eutrophic and mesotrophic lakes showed that one or a few discrete water quality observations using conventional monitoring can yield a clear over- or underestimation of the overall water quality in a lake. The use of TM-type satellite instruments in addition to routine monitoring results substantially increases the number of lakes for which water quality information can be obtained. The preliminary results indicated that coloured dissolved organic matter (CDOM) can be estimated with TM-type satellite instruments, which could possibly be utilised as an aid in estimating the role of lakes in global carbon budgets. Based on the results of reflectance modelling and experimental data, MERIS satellite instrument has optimal or near-optimal channels for the estimation of turbidity, chlorophyll a and CDOM in Finnish lakes. MERIS images with a 300 m spatial resolution can provide water quality information in different parts of large and medium-sized lakes, and in filling in the gaps resulting from conventional monitoring. Algorithms that would not require simultaneous field data for algorithm training would increase the amount of remote sensing-based information available for lake monitoring. The MERIS Boreal Lakes processor, trained with the optical data and concentration ranges provided by this study, enabled turbidity estimations with good accuracy without the need for algorithm correction with field measurements, while chlorophyll a and CDOM estimations require further development of the processor. The accuracy of interpreting chlorophyll a via semi empirical algorithms can be improved by classifying lakes prior to interpretation according to their CDOM level and trophic status. Optical modelling indicated that the spectral diffuse attenuation coefficient can be estimated with reasonable accuracy from the measured water quality concentrations. This provides more detailed information on light attenuation from routine monitoring measurements than is available through the Secchi disk transparency. The results of this study improve the interpretation of lake water quality by remote sensing and encourage the use of remote sensing in lake monitoring.
Resumo:
This dissertation is a theoretical study of finite-state based grammars used in natural language processing. The study is concerned with certain varieties of finite-state intersection grammars (FSIG) whose parsers define regular relations between surface strings and annotated surface strings. The study focuses on the following three aspects of FSIGs: (i) Computational complexity of grammars under limiting parameters In the study, the computational complexity in practical natural language processing is approached through performance-motivated parameters on structural complexity. Each parameter splits some grammars in the Chomsky hierarchy into an infinite set of subset approximations. When the approximations are regular, they seem to fall into the logarithmic-time hierarchyand the dot-depth hierarchy of star-free regular languages. This theoretical result is important and possibly relevant to grammar induction. (ii) Linguistically applicable structural representations Related to the linguistically applicable representations of syntactic entities, the study contains new bracketing schemes that cope with dependency links, left- and right branching, crossing dependencies and spurious ambiguity. New grammar representations that resemble the Chomsky-Schützenberger representation of context-free languages are presented in the study, and they include, in particular, representations for mildly context-sensitive non-projective dependency grammars whose performance-motivated approximations are linear time parseable. (iii) Compilation and simplification of linguistic constraints Efficient compilation methods for certain regular operations such as generalized restriction are presented. These include an elegant algorithm that has already been adopted as the approach in a proprietary finite-state tool. In addition to the compilation methods, an approach to on-the-fly simplifications of finite-state representations for parse forests is sketched. These findings are tightly coupled with each other under the theme of locality. I argue that the findings help us to develop better, linguistically oriented formalisms for finite-state parsing and to develop more efficient parsers for natural language processing. Avainsanat: syntactic parsing, finite-state automata, dependency grammar, first-order logic, linguistic performance, star-free regular approximations, mildly context-sensitive grammars